The dual braid monoid

被引:185
作者
Bessis, D [1 ]
机构
[1] Univ Lyon 1, CNRS, UMR 5028, Inst Girard Desargues, F-69622 Villeurbanne, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2003年 / 36卷 / 05期
关键词
D O I
10.1016/j.ansens.2003.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a new monoid structure for Artin groups associated with finite Coxeter systems. Like the classical positive braid monoid, the new monoid is a Garside monoid. We give several equivalent constructions: algebraically, the new monoid arises when studying Coxeter systems in a "dual" way, replacing the pair (W, S) by (W, T), with T the set of all reflections; geometrically, it arises when looking at the reflection arrangement from a certain basepoint. In the type A case, we recover the monoid constructed by Birman, Ko and Lee. (C) 2003 Elsevier SAS.
引用
收藏
页码:647 / 683
页数:37
相关论文
共 30 条
[1]  
[Anonymous], COMPOSITIO MATH
[2]   Springer theory in braid groups and the Birman-Ko-Lee monoid [J].
Bessis, D ;
Digne, F ;
Michel, J .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 205 (02) :287-309
[3]   Zariski theorems and diagrams for braid groups [J].
Bessis, D .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :487-507
[4]   A new approach to the word and conjugacy problems in the braid groups [J].
Birman, J ;
Ko, KH ;
Lee, SJ .
ADVANCES IN MATHEMATICS, 1998, 139 (02) :322-353
[5]  
Bourbaki N., 1968, Actualites Scientifiques et Industrielles, V1337
[6]   K(π, 1)'s for Artin groups of finite type [J].
Brady, T ;
Watt, C .
GEOMETRIAE DEDICATA, 2002, 94 (01) :225-250
[7]   A partial order on the orthogonal group [J].
Brady, T ;
Watt, C .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (08) :3749-3754
[8]   A partial order on the symmetric group and new K(π,1)′s for the braid groups [J].
Brady, T .
ADVANCES IN MATHEMATICS, 2001, 161 (01) :20-40
[9]   Reduced words and a length function for G(e,1,n) [J].
Bremke, K ;
Malle, G .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (04) :453-469
[10]   FUNDAMENTAL GROUP OF SPACES OF REGULAR ORBITS OF FINITE COMPLEX REFLECTING GROUPS [J].
BRIESKORN, E .
INVENTIONES MATHEMATICAE, 1971, 12 (01) :57-+