Homogeneity Tests for Interval Data

被引:0
作者
Vozhov, Stanislav S. [1 ]
Chimitova, Ekaterina V. [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
来源
RECENT ADVANCES IN SYSTEMS, CONTROL AND INFORMATION TECHNOLOGY | 2017年 / 543卷
关键词
Interval data; Generalized logrank test; ICM algorithm; FAILURE TIME DATA; LOG-RANK-TESTS;
D O I
10.1007/978-3-319-48923-0_83
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many practical situations, we only know the upper bound triangle of the measurement error. It means that the precise measurement is located on the interval (x - triangle, x + triangle). In other words, the data can be represented as a sample of interval observations. When performing statistical tests, ignoring this uncertainty in data may lead to unreliable decisions. For interval data, standard nonparametric and semiparametric methodologies include various modifications of the logrank test for comparing distribution functions. The statistics of the logrank homogeneity tests are based on comparing the nonparametric maximum likelihood estimates (NPMLE) of the distribution functions. In this paper, NPMLE is calculated by the ICM-algorithm (iterative convex minorant algorithm). The purpose of this paper is to investigate some homogeneity tests for interval data and to carry out the comparative analysis in terms of the power of tests for close competing hypotheses.
引用
收藏
页码:775 / 783
页数:9
相关论文
共 50 条
[31]   A Robust Clustering Algorithm for Interval Data [J].
Yang, Miin-Shen ;
Kuo, Hsien-Chun ;
Hung, Wen-Liang .
2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
[32]   Quantile–DEA classifiers with interval data [J].
Quanling Wei ;
Tsung-Sheng Chang ;
Song Han .
Annals of Operations Research, 2014, 217 :535-563
[33]   New clustering methods for interval data [J].
Chavent, Marie ;
de Carvalho, Francisco de A. T. ;
Lechevallier, Yves ;
Verde, Rosanna .
COMPUTATIONAL STATISTICS, 2006, 21 (02) :211-229
[34]   On FDH efficiency analysis with interval data [J].
Jahanshahloo, GR ;
Matin, RK ;
Vencheh, AH .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (01) :47-55
[35]   Probabilistic assessment on the basis of interval data [J].
Thacker, Ben H. ;
Huyse, Luc J. .
STRUCTURAL ENGINEERING AND MECHANICS, 2007, 25 (03) :331-345
[36]   Magnitude Vector Fitting to interval data [J].
Hendrickx, Wouter ;
Deschrijver, Dirk ;
Knockaert, Luc ;
Dhaene, Tom .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (03) :572-580
[37]   Linear discriminant analysis for interval data [J].
Duarte Silva, Antonio Pedro ;
Brito, Paula .
COMPUTATIONAL STATISTICS, 2006, 21 (02) :289-308
[38]   Evaluating the performance and classifying the interval data in data envelopment analysis [J].
Kordrostami, S. ;
Noveiri, M. Jahani Sayyad .
INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2014, 9 (04) :243-248
[39]   EVALUATING THE PERFORMANCE AND CLASSIFYING THE INTERVAL DATA IN DATA ENVELOPMENT ANALYSIS [J].
Kordrostami, Sohrab .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2014, 76 (04) :13-24
[40]   Interval efficiency measures in data envelopment analysis with imprecise data [J].
Kao, Chiang .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 174 (02) :1087-1099