Homogeneity Tests for Interval Data

被引:0
作者
Vozhov, Stanislav S. [1 ]
Chimitova, Ekaterina V. [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
来源
RECENT ADVANCES IN SYSTEMS, CONTROL AND INFORMATION TECHNOLOGY | 2017年 / 543卷
关键词
Interval data; Generalized logrank test; ICM algorithm; FAILURE TIME DATA; LOG-RANK-TESTS;
D O I
10.1007/978-3-319-48923-0_83
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many practical situations, we only know the upper bound triangle of the measurement error. It means that the precise measurement is located on the interval (x - triangle, x + triangle). In other words, the data can be represented as a sample of interval observations. When performing statistical tests, ignoring this uncertainty in data may lead to unreliable decisions. For interval data, standard nonparametric and semiparametric methodologies include various modifications of the logrank test for comparing distribution functions. The statistics of the logrank homogeneity tests are based on comparing the nonparametric maximum likelihood estimates (NPMLE) of the distribution functions. In this paper, NPMLE is calculated by the ICM-algorithm (iterative convex minorant algorithm). The purpose of this paper is to investigate some homogeneity tests for interval data and to carry out the comparative analysis in terms of the power of tests for close competing hypotheses.
引用
收藏
页码:775 / 783
页数:9
相关论文
共 50 条
  • [21] Data generation processes and statistical management of interval data
    Angela Blanco-Fernández
    Peter Winker
    AStA Advances in Statistical Analysis, 2016, 100 : 475 - 494
  • [22] Qualitative and quantitative data envelopment analysis with interval data
    Masahiro Inuiguchi
    Fumiki Mizoshita
    Annals of Operations Research, 2012, 195 : 189 - 220
  • [23] Data generation processes and statistical management of interval data
    Blanco-Fernandez, Angela
    Winker, Peter
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2016, 100 (04) : 475 - 494
  • [24] Qualitative and quantitative data envelopment analysis with interval data
    Inuiguchi, Masahiro
    Mizoshita, Fumiki
    ANNALS OF OPERATIONS RESEARCH, 2012, 195 (01) : 189 - 220
  • [25] Fuzzy Data Envelopment Analysis with Ordinal and Interval Data
    Izadikhah, Mohammad
    Roostaee, Razieh
    Emrouznejad, Ali
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2021, 29 (03) : 385 - 410
  • [26] A DATA STREAMS CLUSTERING ALGORITHM BASED ON INTERVAL DATA
    Li, Yan
    Ye, Ming
    Wang, Huiwen
    Liu, Dan
    Che, Yin
    PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 2775 - 2778
  • [27] A generalized model for data envelopment analysis with interval data
    Jahanshahloo, G. R.
    Lotfi, F. Hosseinzadeh
    Malkhalifeh, M. Rostamy
    Namin, M. Ahadzadeh
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (07) : 3237 - 3244
  • [28] New clustering methods for interval data
    Chavent, Marie
    de Carvalho, Francisco de A. T.
    Lechevallier, Yves
    Verde, Rosanna
    COMPUTATIONAL STATISTICS, 2006, 21 (02) : 211 - 229
  • [29] A Robust Clustering Algorithm for Interval Data
    Yang, Miin-Shen
    Kuo, Hsien-Chun
    Hung, Wen-Liang
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [30] On FDH efficiency analysis with interval data
    Jahanshahloo, GR
    Matin, RK
    Vencheh, AH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (01) : 47 - 55