The interaction between atomic-scale pores and particles

被引:0
作者
Hassani, Nasim [1 ]
Neek-Amal, Mehdi [2 ]
机构
[1] Shahid Rajaee Univ, Dept Phys, Tehran 16875163, Iran
[2] Univ Antwerp, Dept Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
基金
美国国家科学基金会;
关键词
interaction energy; atomic scale pore; direct particle incident; surface diffusion; POROUS GRAPHENE; SEPARATION; TRANSPORT; MECHANISMS; MEMBRANE;
D O I
10.1088/1361-648X/ac2bc6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using first-principles calculations for angstrom-sized pores (3-10 angstrom), we investigate pore-particle interaction. The translocation energy barrier (TEB) plays important role for the angstrom-scale pores created in 2D-materials such as graphene which is calculated for the translocation of rare gases (He, Ne, Ar, Xe), diatomic molecules (H-2 and N-2), CO2, and CH4. The critical incident angle (the premeance beyond that is zero) was found to be 40 degrees, which is different from classical model's prediction of 19-37 degrees. The calculated TEB (Delta) and the surface diffusion energy barrier (Delta ') for the particles with small kinetic diameter (He, Ne and H-2), show that the direct flow is the dominant permeation mechanism (Delta approximate to 0 and Delta ' > 30 meV). For the other particles with larger kinetic diameters (Ar, Kr, N-2, CH4 and CO2), we found that both surface diffusion and direct flow mechanisms are possible, i.e. Delta and Delta ' not equal 0. This work provides important insights into the gas permeation theory and into the design and development of gas separation and filtration devices.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] How strongly do hydrogen and water molecules stick to carbon nanomaterials?
    Al-Hamdani, Yasmine S.
    Alfe, Dario
    Michaelides, Angelos
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (09)
  • [2] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [3] Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes
    Boutilier, Michael S. H.
    Jang, Doojoon
    Idrobo, Juan-Carlos
    Kidambi, Piran R.
    Hadjiconstantinou, Nicolas G.
    Karnik, Rohit
    [J]. ACS NANO, 2017, 11 (06) : 5726 - 5736
  • [4] Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids
    Bucko, Tomas
    Lebegue, S.
    Hafner, Juergen
    Angyan, J. G.
    [J]. PHYSICAL REVIEW B, 2013, 87 (06)
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES
    DELLEY, B
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) : 508 - 517
  • [7] From molecules to solids with the DMol3 approach
    Delley, B
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) : 7756 - 7764
  • [8] Size effect in ion transport through angstrom-scale slits
    Esfandiar, A.
    Radha, B.
    Wang, F. C.
    Yang, Q.
    Hu, S.
    Garaj, S.
    Nair, R. R.
    Geim, A. K.
    Gopinadhan, K.
    [J]. SCIENCE, 2017, 358 (6362) : 511 - 513
  • [9] Morse parameters for the interaction of metals with graphene and silicene
    Galashev, Alexander Y.
    Katin, Konstantin P.
    Maslov, Mikhail M.
    [J]. PHYSICS LETTERS A, 2019, 383 (2-3) : 252 - 258
  • [10] Fast, accurate, and transferable many-body interatomic potentials by symbolic regression
    Hernandez, Alberto
    Balasubramanian, Adarsh
    Yuan, Fenglin
    Mason, Simon A. M.
    Mueller, Tim
    [J]. NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)