ULTRACONVERGENCE OF FINITE ELEMENT METHOD BY RICHARDSON EXTRAPOLATION FOR ELLIPTIC PROBLEMS WITH CONSTANT COEFFICIENTS

被引:16
作者
He, Wen-Ming [1 ]
Lin, Runchang [2 ]
Zhang, Zhimin [3 ,4 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 320035, Zhejiang, Peoples R China
[2] Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
finite element method; second order elliptic equation; ultraconvergence; Richardson extrapolation; IRREGULAR MESHES; SUPERCONVERGENCE; ERROR; ACCURACY; POINTS;
D O I
10.1137/15M1031710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, two novel Richardson extrapolation operators P-1(k) and P-2(k) are proposed to investigate local 2k order ultraconvergence properties of the kth order Lagrange finite element method for the second order elliptic problem with constant coefficients. Assume that x(0) is an interior mesh node of the underlying mesh which is away from the boundary for a fixed distance unchanging with further mesh re finement. We show that, for both tensor product Q(k) element and simplicial P-k element, it holds vertical bar (u - P(1)(k)u(h)) (x(0))vertical bar <= ch(2k) vertical bar ln h vertical bar((k) over bar +1) and vertical bar(del u - P-2(k) ((del) over baru(h))) (x(0))vertical bar <= ch(2k) vertical bar ln h vertical bar((k) over bar +1), where u(h) is the finite element approximation of u, del is defined in section 1.1, and (k) over bar = 1 if k = 1 and (k) over tilde = 0 if k > 1. Numerical results are provided to demonstrate the theoretic findings.
引用
收藏
页码:2302 / 2322
页数:21
相关论文
共 30 条
[1]   ASYMPTOTIC ERROR EXPANSIONS FOR THE FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS IN RN, N ≥ 2. I: LOCAL INTERIOR EXPANSIONS [J].
Asadzadeh, M. ;
Schatz, A. H. ;
Wendland, W. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) :2000-2017
[2]   A NEW APPROACH TO RICHARDSON EXTRAPOLATION IN THE FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Asadzadeh, M. ;
Schatz, A. H. ;
Wendland, W. .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :1951-1973
[3]   Improving the rate of convergence of high-order finite elements on polyhedra I:: A priori estimates [J].
Bacuta, C ;
Nistor, V ;
Zikatanov, LT .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2005, 26 (06) :613-639
[4]  
Bey J, 2000, NUMER MATH, V85, P1, DOI 10.1007/s002110000108
[5]  
BLUM H, 1987, Z ANGEW MATH MECH, V67, pT351
[6]  
BRAMBLE JH, 1977, MATH COMPUT, V31, P94, DOI 10.1090/S0025-5718-1977-0431744-9
[7]  
Chen CM, 2013, MATH COMPUT, V82, P1337
[8]  
CHEN CM, 1989, J COMPUT MATH, V7, P227
[9]  
Cockburn B, 2003, MATH COMPUT, V72, P577, DOI 10.1090/S0025-5718-02-01464-3
[10]  
Douglas J., 1973, TOPICS NUMERICAL ANA, P89