Effect of different anode electrodes with Li(Li0.25Co0.37Mn0.38)O2 as cathode material on Li: ion battery performance

被引:0
作者
Vandana [1 ]
Gupta, Reema [1 ]
Chaudhary, Anisha [1 ]
Tandon, R. P. [1 ]
Gupta, Vinay [1 ]
Tomar, Monika [2 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[2] Univ Delhi, Dept Phys, Miranda House, Delhi 110007, India
关键词
LITHIUM MANGANESE OXIDE; ELECTROCHEMICAL PROPERTIES; LIFEPO4; CATHODE; HIGH-CAPACITY; COMPOSITES; CELLS;
D O I
10.1007/s10854-021-07584-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the present work, Li-rich layered Li(Li0.25Co0.37Mn0.38)O-2 (LiCMO) material is prepared using sol-gel technique. The effect of calcination temperature on the structural and morphological characteristics of LiCMO is studied. The electrochemical performance of layered LiCMO/graphite (Cell 1) and LiCMO/Li (Cell 2) has been investigated. The charge transfer resistance (R-ct), lithium diffusion coefficients, and discharging capacity are found to be 16,242 omega, 3.89 x 10(-11) S-1 cm(2), and 5.26 mAhg(-1) and 16 omega, 20.78 x 10(-8) S-1 cm(2), and 323 mAhg(-1) for Cells 1 and 2, respectively. The presence of efficient lithium-ion transfer tendency and minimal kinetic barrier for lithium diffusion results in enhanced electrochemical properties of Cell 2. Appreciable results for (LiCMO/Li) coin cell make it a unique combination of LiCMO as cathode with Li as anode for the high energy density lithium-ion battery.
引用
收藏
页码:3901 / 3913
页数:13
相关论文
共 40 条
  • [1] Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications
    Amine, K
    Liu, J
    Kang, S
    Belharouak, I
    Hyung, Y
    Vissers, D
    Henriksen, G
    [J]. JOURNAL OF POWER SOURCES, 2004, 129 (01) : 14 - 19
  • [2] Improving anode performances of lithium-ion capacitors employing carbon-Si composites
    An, Ya-Bin
    Chen, Si
    Zou, Min-Min
    Geng, Lin-Bin
    Sun, Xian-Zhong
    Zhang, Xiong
    Wang, Kai
    Ma, Yan-Wei
    [J]. RARE METALS, 2019, 38 (12) : 1113 - 1123
  • [3] The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites
    Asenbauer, Jakob
    Eisenmann, Tobias
    Kuenzel, Matthias
    Kazzazi, Arefeh
    Chen, Zhen
    Bresser, Dominic
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) : 5387 - 5416
  • [4] Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications
    Cao, Xinxin
    Pan, Anqiang
    Yin, Bo
    Fang, Guozhao
    Wang, Yaping
    Kong, Xiangzhong
    Zhu, Ting
    Zhou, Jiang
    Cao, Guozhong
    Liang, Shuquan
    [J]. NANO ENERGY, 2019, 60 : 312 - 323
  • [5] Chang H., 2013, Collaborative autoethnography
  • [6] Gel-combustion synthesis of Li1.2Mn0.4Co0.4O2 composites with a high capacity and superior rate capability for lithium-ion batteries
    Fu, Chaochao
    Li, Guangshe
    Luo, Dong
    Zheng, Jing
    Li, Liping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) : 1471 - 1483
  • [7] Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries
    Ge, Junmin
    Wang, Bin
    Zhou, Jiang
    Liang, Shuquan
    Rao, Apparao M.
    Lu, Bingan
    [J]. ACS MATERIALS LETTERS, 2020, 2 (07): : 853 - 860
  • [8] Effect of manganese doping on conduction in olivine LiFePO4
    Gupta, Reema
    Saha, Shibu
    Tomar, Monika
    Sachdev, V. K.
    Gupta, Vinay
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (07) : 5192 - 5199
  • [9] Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries
    Hansen, Sandra
    Quiroga-Gonzalez, Enrique
    Carstensen, Juergen
    Foell, Helmut
    [J]. ELECTROCHIMICA ACTA, 2016, 217 : 283 - 291
  • [10] Binder Free SnO2-CNT Composite as Anode Material for Li-Ion Battery
    Hernandez, Dionne
    Mendoza, Frank
    Febus, Emmanuel
    Weiner, Brad R.
    Morell, Gerardo
    [J]. JOURNAL OF NANOTECHNOLOGY, 2014, 2014 (2014)