Automatic Classification of Diabetic Foot Ulcers Using Computer Vision Techniques

被引:3
|
作者
Daniel Lopez-Cabrera, Jose [1 ]
Ruiz-Gonzalez, Yusely [1 ]
Diaz-Amador, Roberto [1 ]
Taboada-Crispi, Alberto [1 ]
机构
[1] Univ Cent Marta Abreu Las Villas, Santa Clara, Cuba
来源
PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION | 2021年 / 13055卷
关键词
Computer vision; Pattern recognition; Diabetic foot ulcers;
D O I
10.1007/978-3-030-89691-1_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic foot ulcers are one of the common complications that diabetic patients present. Poorly treated lesions can lead to the amputation of the limbs and even cause death. Therefore, the identification and follow-up of the lesions are of vital importance to apply a timely treatment. In this study, we performed the automatic classification of images of diabetic foot ulcers using computer vision techniques. We evaluated different approaches to traditional computer vision techniques and feature extraction from a convolution neural network. An SVM classifier using features extracted by the CNN Densenet201 obtained the best results. The results achieved here outperformed those reported in the literature for similar problems in terms of the F1score measure. That shows that the proposed alternative of combining a pre-trained CNN model as a feature extraction method and then using automatic classifiers is satisfactory in this task.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 50 条
  • [21] Review on the proceeding of automatic seedlings classification by computer vision
    Yang Yan-zhu
    Zhao Xue-zeng
    Wang Wei-jie
    Wu Xian
    Journal of Forestry Research, 2002, 13 (3) : 245 - 249
  • [22] Qualitative classification of milled rice grains using computer vision and metaheuristic techniques
    Zareiforoush, Hemad
    Minaei, Saeid
    Alizadeh, Mohammad Reza
    Banakar, Ahmad
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2016, 53 (01): : 118 - 131
  • [23] A comprehensive review on soil classification using deep learning and computer vision techniques
    Pallavi Srivastava
    Aasheesh Shukla
    Atul Bansal
    Multimedia Tools and Applications, 2021, 80 : 14887 - 14914
  • [24] A comprehensive review on soil classification using deep learning and computer vision techniques
    Srivastava, Pallavi
    Shukla, Aasheesh
    Bansal, Atul
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 14887 - 14914
  • [25] Qualitative classification of milled rice grains using computer vision and metaheuristic techniques
    Hemad Zareiforoush
    Saeid Minaei
    Mohammad Reza Alizadeh
    Ahmad Banakar
    Journal of Food Science and Technology, 2016, 53 : 118 - 131
  • [26] Cachaca Classification Using Chemical Features and Computer Vision
    Rodrigues, Bruno Urbano
    da Costa, Ronaldo Martins
    Salvini, Rogerio Lopes
    Soares, Anderson da Silva
    da Silva, Flavio Alves
    Caliari, Marcio
    Rodrigues Cardoso, Karla Cristina
    Monteiro Ribeiro, Tania Isabel
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2014, 29 : 2024 - 2033
  • [27] Quality classification of corn tortillas using computer vision
    Mery, Domingo
    Chanona-Perez, Jorge J.
    Soto, Alvaro
    Miguel Aguilera, Jose
    Cipriano, Aldo
    Velez-Rivera, Nayeli
    Arzate-Vazquez, Israel
    Gutierrez-Lopez, Gustavo F.
    JOURNAL OF FOOD ENGINEERING, 2010, 101 (04) : 357 - 364
  • [28] A practical framework for automatic food products classification using computer vision and inductive characterization
    Calvo, Hiram
    Moreno-Armendariz, Marco A.
    Godoy-Calderon, Salvador
    NEUROCOMPUTING, 2016, 175 : 911 - 923
  • [29] Advancing pharmacotherapy for diabetic foot ulcers
    Eleftheriadou, Ioanna
    Tentolouris, Anastasios
    Tentolouris, Nikolaos
    Papanas, Nikolaos
    EXPERT OPINION ON PHARMACOTHERAPY, 2019, 20 (09) : 1153 - 1160
  • [30] Vitamin E and Diabetic Foot Ulcers
    Karakousis, Nikolaos D.
    Pyrgioti, Elisavet E.
    Georgakopoulos, Petros N.
    Karagiannakis, Dimitrios S.
    Papanas, Nikolaos
    CURRENT DIABETES REVIEWS, 2024, 20 (07)