Interaction of ultracold antihydrogen with a conducting wall

被引:31
作者
Voronin, AY
Froelich, P
Zygelman, B
机构
[1] PN Lebedev Phys Inst, Moscow 117924, Russia
[2] Uppsala Univ, Dept Quantum Chem, SE-75120 Uppsala, Sweden
[3] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 06期
关键词
D O I
10.1103/PhysRevA.72.062903
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the interaction of ultracold antihydrogen with a conducting surface, focusing on the phenomenon of quantum reflection. We calculate the reflection probability as a function of incident atom energy. We find that, for ground-state (H) over bar atoms (with T < 10(-5) K), the probability of reflection is R similar or equal to 1-kb, where k is the momentum of the atom and b=2174.0 a.u. is a constant determined solely by the van der Waals-Casimir tail of the atom-wall interaction. We show that quantum reflection, which suppresses the direct contact of ultracold atoms with the surface, allows for the possibility of confinement and storage of sufficiently cold antihydrogen atoms. We calculate the lifetime of (H) over bar atoms enclosed in between solid walls. We develop a theory of (H) over bar in a waveguide and propose some applications, notably the measurement of retardation corrections in the long-range component of the antiatom-wall potential. We demonstrate the existence of quantized states for antihydrogen atoms falling onto conducting surface in the gravitational field of Earth. We calculate the lifetime of ultracold (H) over bar in its lowest gravitational state and obtain tau=(Mgb/2h)(-1)similar or equal to 0.1 s, where Mg is a gravitational force acting on the antiatom. We propose that measurement of this lifetime may provide a new test for the gravitational properties of antimatter.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Production and detection of cold antihydrogen atoms [J].
Amoretti, M ;
Amsler, C ;
Bonomi, G ;
Bouchta, A ;
Bowe, P ;
Carraro, C ;
Cesar, CL ;
Charlton, M ;
Collier, MJT ;
Doser, M ;
Filippini, V ;
Fine, KS ;
Fontana, A ;
Fujiwara, MC ;
Funakoshi, R ;
Genova, P ;
Hangst, JS ;
Hayano, RS ;
Holzscheiter, MH ;
Jorgensen, LV ;
Lagomarsino, V ;
Landua, R ;
Lindelöf, D ;
Rizzini, EL ;
Macri, M ;
Madsen, N ;
Manuzio, G ;
Marchesotti, M ;
Montagna, P ;
Pruys, H ;
Regenfus, C ;
Riedler, P ;
Rochet, J ;
Rotondi, A ;
Rouleau, G ;
Testera, G ;
Variola, A ;
Watson, TL ;
van der Werf, DP .
NATURE, 2002, 419 (6906) :456-459
[2]  
[Anonymous], 1964, Handbook of mathematical functions
[3]   Casimir-Polder interaction between an atom and a cavity wall under the influence of real conditions [J].
Babb, JF ;
Klimchitskaya, GL ;
Mostepanenko, VM .
PHYSICAL REVIEW A, 2004, 70 (04) :042901-1
[4]  
BABIKOV VV, 1967, METHODS PHASE FUNCTI
[5]   New developments in the Casimir effect [J].
Bordag, M ;
Mohideen, U ;
Mostepanenko, VM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 353 (1-3) :1-205
[6]  
CALOGERO F, 1967, PHASE APPROACH POTEN
[7]   THE INFLUENCE OF RETARDATION ON THE LONDON-VANDERWAALS FORCES [J].
CASIMIR, HBG ;
POLDER, D .
PHYSICAL REVIEW, 1948, 73 (04) :360-372
[8]   THE GENERAL THEORY OF VANDERWAALS FORCES [J].
DZYALOSHINSKII, IE ;
LIFSHITZ, EM ;
PITAEVSKII, LP .
ADVANCES IN PHYSICS, 1961, 10 (38) :165-209
[9]   Quantum reflection times for attractive potential tails [J].
Friedrich, H ;
Jurisch, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :103202-1
[10]   Working with WKB waves far from the semiclassical limit [J].
Friedrich, H ;
Trost, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 397 (06) :359-449