High expression of FLT3 is a risk factor in leukemia

被引:39
作者
Cheng, Jie [1 ,2 ]
Qu, Lijun [1 ,2 ]
Wang, Jian [1 ,2 ]
Cheng, Lemei [1 ,2 ]
Wang, Yi [1 ]
机构
[1] Soochow Univ, Childrens Hosp, Dept Hematol & Oncol, 92 Zhong Nan St, Suzhou 215025, Jiangsu, Peoples R China
[2] Anhui Prov Childrens Hosp, Dept Hematol & Oncol, Hefei 230041, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
FMS-like tyrosine kinase 3; acute myeloid leukemia; prognostic factor; DNA methylation; differentially-expressed gene; ACUTE MYELOID-LEUKEMIA; INTERNAL TANDEM DUPLICATION; ACUTE PROMYELOCYTIC LEUKEMIA; ACUTE LYMPHOBLASTIC-LEUKEMIA; CONSTITUTIVE ACTIVATION; MYELODYSPLASTIC SYNDROME; PROGNOSTIC-SIGNIFICANCE; MYELOGENOUS LEUKEMIA; CANCER GENOMICS; MEIS1; COOPERATE;
D O I
10.3892/mmr.2017.8232
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Several studies have shown that internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) can result in the failure of leukemia treatment and contribute to a poor prognosis. However, the role of the overexpression of FLT3 in leukemia remains to be fully elucidated. By mining public database, the present study first identified that the expression of FLT3 in leukemia was markedly higher, compared with that in other types of tumor and cell lines, indicating that FLT3 is important in leukemia. In leukemia, FLT3 was found to be significantly upregulated in acute myeloid leukemia and acute lymphoblastic leukemia, and a high expression of FLT3 contributed to reduced survival rates. By analyzing Gene Expression Omnibus and The Cancer Genome Atlas data, it was found that genetic alterations and modification of DNA methylation increased the expression of FLT3 in leukemia. FLT3-ITD and FLT3 tyrosine kinase domain point mutations increased the expression of FLT3 in four independent datasets. In addition, the status of FLT3 gene methylation was negatively correlated with the expression of FLT3, and haploinsufficiency of DNA methyltransferase 1 increased the expression of Flt3 in mouse leukemia cells. By analyzing the enrichment of differentially-expressed genes in chemical and genetic perturbation datasets, it was found that genes, which were upregulated in the FLT3 high expression group had myeloid lymphoid leukemia- and nucleophosmin 1-like signatures, indicating that the overexpression of FLT3 may use the same mechanism to promote leukemia. Collectively, the results of the present study showed that the overexpression of FLT3 is a potential risk factor in leukemia.
引用
收藏
页码:2885 / 2892
页数:8
相关论文
共 58 条
[31]   Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia [J].
Meshinchi, S ;
Woods, WG ;
Stirewalt, DL ;
Sweetser, DA ;
Buckley, JD ;
Tjoa, TK ;
Bernstein, ID ;
Radich, JP .
BLOOD, 2001, 97 (01) :89-94
[32]   Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways [J].
Mizuki, M ;
Fenski, R ;
Halfter, H ;
Matsumura, I ;
Schmidt, R ;
Müller, C ;
Grüning, R ;
Kratz-Abers, K ;
Serve, S ;
Steur, C ;
Büchner, T ;
Kienast, J ;
Kanakura, Y ;
Berdel, WE ;
Serve, H .
BLOOD, 2000, 96 (12) :3907-3914
[33]   Src-like adaptor protein 2 (SLAP2) binds to and inhibits FLT3 signaling [J].
Moharram, Sausan A. ;
Chougule, Rohit A. ;
Su, Xianwei ;
Li, Tianfeng ;
Sun, Jianmin ;
Zhao, Hui ;
Ronnstrand, Lars ;
Kazi, Julhash U. .
ONCOTARGET, 2016, 7 (36) :57770-57782
[34]   PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes [J].
Mootha, VK ;
Lindgren, CM ;
Eriksson, KF ;
Subramanian, A ;
Sihag, S ;
Lehar, J ;
Puigserver, P ;
Carlsson, E ;
Ridderstråle, M ;
Laurila, E ;
Houstis, N ;
Daly, MJ ;
Patterson, N ;
Mesirov, JP ;
Golub, TR ;
Tamayo, P ;
Spiegelman, B ;
Lander, ES ;
Hirschhorn, JN ;
Altshuler, D ;
Groop, LC .
NATURE GENETICS, 2003, 34 (03) :267-273
[35]  
Nakao M, 1996, LEUKEMIA, V10, P1911
[36]   Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia [J].
Ozeki, K ;
Kiyoi, H ;
Hirose, Y ;
Iwai, M ;
Ninomiya, M ;
Kodera, Y ;
Miyawaki, S ;
Kuriyama, K ;
Shimazaki, C ;
Akiyama, H ;
Nishimura, M ;
Motoji, T ;
Shinagawa, K ;
Takeshita, A ;
Ueda, R ;
Ohno, R ;
Emi, N ;
Naoe, T .
BLOOD, 2004, 103 (05) :1901-1908
[37]   The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia [J].
Palmqvist, Lars ;
Argiropoulos, Bob ;
Pineault, Nicolas ;
Abramovich, Carolina ;
Sly, Laura M. ;
Krystal, Gerald ;
Wan, Adrian ;
Humphries, R. Keith .
BLOOD, 2006, 108 (03) :1030-1036
[38]   Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia [J].
Patel, Jay P. ;
Goenen, Mithat ;
Figueroa, Maria E. ;
Fernandez, Hugo ;
Sun, Zhuoxin ;
Racevskis, Janis ;
Van Vlierberghe, Pieter ;
Dolgalev, Igor ;
Thomas, Sabrena ;
Aminova, Olga ;
Huberman, Kety ;
Cheng, Janice ;
Viale, Agnes ;
Socci, Nicholas D. ;
Heguy, Adriana ;
Cherry, Athena ;
Vance, Gail ;
Higgins, Rodney R. ;
Ketterling, Rhett P. ;
Gallagher, Robert E. ;
Litzow, Mark ;
van den Brink, Marcel R. M. ;
Lazarus, Hillard M. ;
Rowe, Jacob M. ;
Luger, Selina ;
Ferrando, Adolfo ;
Paietta, Elisabeth ;
Tallman, Martin S. ;
Melnick, Ari ;
Abdel-Wahab, Omar ;
Levine, Ross L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (12) :1079-1089
[39]   SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia [J].
Puissant, Alexandre ;
Fenouille, Nina ;
Alexe, Gabriela ;
Pikman, Yana ;
Bassi, Christopher F. ;
Mehta, Swapnil ;
Du, Jinyan ;
Kazi, Julhash U. ;
Luciano, Frederic ;
Ronnstrand, Lars ;
Kung, Andrew L. ;
Aster, Jon C. ;
Galinsky, Ilene ;
Stone, Richard M. ;
DeAngelo, Daniel J. ;
Hemann, Michael T. ;
Stegmaier, Kimberly .
CANCER CELL, 2014, 25 (02) :226-242
[40]   limma powers differential expression analyses for RNA-sequencing and microarray studies [J].
Ritchie, Matthew E. ;
Phipson, Belinda ;
Wu, Di ;
Hu, Yifang ;
Law, Charity W. ;
Shi, Wei ;
Smyth, Gordon K. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07) :e47