Antagonism of miR-21 Reverses Epithelial-Mesenchymal Transition and Cancer Stem Cell Phenotype through AKT/ERK1/2 Inactivation by Targeting PTEN

被引:184
作者
Han, Mingli [1 ,2 ,3 ]
Liu, Manran [2 ,3 ]
Wang, Yimeng [4 ]
Chen, Xin [1 ]
Xu, Jianli [5 ]
Sun, Yan [2 ,3 ]
Zhao, Liuyang [2 ,3 ]
Qu, Hongbo [1 ]
Fan, Yuanming [1 ]
Wu, Chengyi [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Endocrine Surg, Chongqing, Peoples R China
[2] Chongqing Med Univ, Minist Educ, Key Lab Lab Med Diagnost, Chongqing, Peoples R China
[3] Chongqing Med Univ, Dept Clin Biochem, Chongqing, Peoples R China
[4] Chongqing Med Univ, Affiliated Hosp 1, Dept Emergency, Chongqing, Peoples R China
[5] Peoples Hosp Jiangjin City, Dept Gen Surg, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
TUMOR-SUPPRESSOR GENE; MICRORNA-21; TARGETS; IN-VIVO; INVASION; EXPRESSION; AKT; METASTASIS; ACTIVATION; EMT; IDENTIFICATION;
D O I
10.1371/journal.pone.0039520
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Accumulating evidence suggested that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) characteristics, both of which contribute to tumor invasion and metastasis, are interrelated with miR-21. MiR-21 is one of the important microRNAs associated with tumor progression and metastasis, but the molecular mechanisms underlying EMT and CSC phenotype during miR-21 contributes to migration and invasion of breast cancer cells remain to be elucidated. Methodology/Principal Findings: In this study, MDA-MB-231/anti-miR-21 cells were established by transfected hsa-miR-21 antagomir into breast cancer MDA-MB-231 cells. EMT was evaluated by the changes of mesenchymal cell markers (N-cadherin, Vimentin, and alpha-SMA), epithelial cell marker (E-cadherin), as well as capacities of cell migration and invasion; CSC phenotype was measured using the changes of CSC surface markers (ALDH1 and CD44), and the capacity of sphereforming (mammospheres). We found that antagonism of miR-21 reversed EMT and CSC phenotype, accompanied with PTEN up-regulation and AKT/ERK1/2 inactivation. Interestingly, down-regulation of PTEN by siPTEN suppressed the effects of miR-21 antagomir on EMT and CSC phenotype, confirming that PTEN is a target of miR-21 in reversing EMT and CSC phenotype. The inhibitors of PI3K-AKT and ERK1/2 pathways, LY294002 and U0126, both significantly suppressed EMT and CSC phenotype, indicating that AKT and ERK1/2 pathways are required for miR-21 mediating EMT and CSC phenotype. Conclusions/Significance: In conclusion, our results demonstrated that antagonism of miR-21 reverses EMT and CSC phenotype through targeting PTEN, via inactivation of AKT and ERK1/2 pathways, and showed a novel mechanism of which might relieve the malignant biological behaviors of breast cancer.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[2]   microRNAs: Tiny regulators with great potential [J].
Ambros, V .
CELL, 2001, 107 (07) :823-826
[3]   MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer [J].
Asangani, I. A. ;
Rasheed, S. A. K. ;
Nikolova, D. A. ;
Leupold, J. H. ;
Colburn, N. H. ;
Post, S. ;
Allgayer, H. .
ONCOGENE, 2008, 27 (15) :2128-2136
[4]   RETRACTED: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells (Retracted article. See vol. 423, pg. 153, 2018) [J].
Bao, Bin ;
Wang, Zhiwei ;
Ali, Shadan ;
Kong, Dejuan ;
Li, Yiwei ;
Ahmad, Aamir ;
Banerjee, Sanjeev ;
Azmi, Asfar S. ;
Miele, Lucio ;
Sarkar, Fazlul H. .
CANCER LETTERS, 2011, 307 (01) :26-36
[5]   RETRACTED: Anti-Tumor Activity of a Novel Compound-CDF Is Mediated by Regulating miR-21, miR-200, and PTEN in Pancreatic Cancer (Retracted Article) [J].
Bao, Bin ;
Ali, Shadan ;
Kong, Dejuan ;
Sarkar, Sanila H. ;
Wang, Zhiwei ;
Banerjee, Sanjeev ;
Aboukameel, Amro ;
Padhye, Subhash ;
Philip, Philip A. ;
Sarkar, Fazlul H. .
PLOS ONE, 2011, 6 (03)
[6]   PTEN, more than the AKT pathway [J].
Blanco-Aparicio, Carmen ;
Renner, Oliver ;
Leal, Juan F. M. ;
Carnero, Amancio .
CARCINOGENESIS, 2007, 28 (07) :1379-1386
[7]   Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer [J].
Blick, Tony ;
Hugo, Honor ;
Widodo, Edwin ;
Waltham, Mark ;
Pinto, Cletus ;
Mani, Sendurai A. ;
Weinberg, Robert A. ;
Neve, Richard M. ;
Lenburg, Marc E. ;
Thompson, Erik W. .
JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2010, 15 (02) :235-252
[8]   Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas [J].
Braun, J. ;
Hoang-Vu, C. ;
Dralle, H. ;
Huettelmaier, S. .
ONCOGENE, 2010, 29 (29) :4237-4244
[9]   Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis [J].
Christiansen, Jason J. ;
Rajasekaran, Ayyappan K. .
CANCER RESEARCH, 2006, 66 (17) :8319-8326
[10]   MicroRNA Sequence and Expression Analysis in Breast Tumors by Deep Sequencing [J].
Farazi, Thalia A. ;
Horlings, Hugo M. ;
ten Hoeve, Jelle J. ;
Mihailovic, Aleksandra ;
Halfwerk, Hans ;
Morozov, Pavel ;
Brown, Miguel ;
Hafner, Markus ;
Reyal, Fabien ;
van Kouwenhove, Marieke ;
Kreike, Bas ;
Sie, Daoud ;
Hovestadt, Volker ;
Wessels, Lodewyk F. A. ;
van de Vijver, Marc J. ;
Tuschl, Thomas .
CANCER RESEARCH, 2011, 71 (13) :4443-4453