Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries

被引:194
作者
Li, Caixia [1 ]
Xi, Zhucong [1 ]
Guo, Dexiang [1 ]
Chen, Xiangju [1 ]
Yin, Longwei [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
关键词
chemical affinity; chemical immobilizing effects; lithium polysulfides; lithium-sulfur batteries; polar interactions; REDUCED GRAPHENE OXIDE; METAL-ORGANIC FRAMEWORK; HIERARCHICALLY POROUS CARBON; HIGH-CAPACITY CATHODE; HIGH-LOADING SULFUR; LI-S BATTERIES; LONG-LIFE; FLEXIBLE CATHODES; DOPED GRAPHENE; PERFORMANCE;
D O I
10.1002/smll.201701986
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite great progress in lithium-sulfur batteries (LSBs), great obstacles still exist to achieve high loading content of sulfur and avoid the loss of active materials due to the dissolution of the intermediate polysulfide products in the electrolyte. Relationships between the intrinsic properties of nanostructured hosts and electrochemical performance of LSBs, especially, the chemical interaction effects on immobilizing polysulfides for LSB cathodes, are discussed in this Review. Moreover, the principle of rational microstructure design for LSB cathode materials with strong chemical interaction adsorbent effects on polysulfides, such as metallic compounds, metal particles, organic polymers, and heteroatom-doped carbon, is mainly described. According to the chemical immobilizing mechanism of polysulfide on LSB cathodes, three kinds of chemical immobilizing effects, including the strong chemical affinity between polar host and polar polysulfides, the chemical bonding effect between sulfur and the special function groups/atoms, and the catalytic effect on electrochemical reaction kinetics, are thoroughly reviewed. To improve the electrochemical performance and long cycling life-cycle stability of LSBs, possible solutions and strategies with respect to the rational design of the microstructure of LSB cathodes are comprehensively analyzed.
引用
收藏
页数:21
相关论文
共 113 条
[1]   Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries [J].
Ai, Guo ;
Dai, Yiling ;
Mao, Wenfeng ;
Zhao, Hui ;
Fu, Yanbao ;
Song, Xiangyun ;
En, Yunfei ;
Battaglia, Vincent S. ;
Srinivasan, Venkat ;
Liu, Gao .
NANO LETTERS, 2016, 16 (09) :5365-5372
[2]   Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries [J].
Ai, Wei ;
Zhou, Weiwei ;
Du, Zhuzhu ;
Chen, Yu ;
Sun, Zhipeng ;
Wu, Chao ;
Zou, Chenji ;
Li, Changming ;
Huang, Wei ;
Yu, Ting .
ENERGY STORAGE MATERIALS, 2017, 6 :112-118
[3]   Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis [J].
Babu, Ganguli ;
Masurkar, Nirul ;
Al Salem, Hesham ;
Arave, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :171-178
[4]   Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery [J].
Bai, Linyi ;
Chao, Dongliang ;
Xing, Pengyao ;
Tou, Li Juan ;
Chen, Zhen ;
Jana, Avijit ;
Shen, Ze Xiang ;
Zhao, Yanli .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (23) :14328-14333
[5]   Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries [J].
Cai, Junjie ;
Wu, Chun ;
Zhu, Ying ;
Zhang, Kaili ;
Shen, Pei Kang .
JOURNAL OF POWER SOURCES, 2017, 341 :165-174
[6]   A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High- Performance Lithium-Sulfur Batteries with Unconventional Configurations [J].
Cao, Jun ;
Chen, Chen ;
Zhao, Qing ;
Zhang, Ning ;
Lu, Qiongqiong ;
Wang, Xinyu ;
Niu, Zhiqiang ;
Chen, Jun .
ADVANCED MATERIALS, 2016, 28 (43) :9629-+
[7]   High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte [J].
Chen, Shuru ;
Gao, Yue ;
Yu, Zhaoxin ;
Gordin, Mikhail L. ;
Song, Jiangxuan ;
Wang, Donghai .
NANO ENERGY, 2017, 31 :418-423
[8]   Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
SMALL, 2016, 12 (07) :939-950
[9]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[10]   Lithium-sulfur batteries with superior cycle stability by employing porous current collectors [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHIMICA ACTA, 2013, 107 :569-576