A sufficient condition for a semicomplete multipartite digraph to be Hamiltonian

被引:12
作者
BangJensen, J
Gutin, G
Huang, J
机构
[1] SIMON FRASER UNIV,SCH COMP SCI,BURNABY,BC V5A 1S6,CANADA
[2] ODENSE UNIV,DEPT MATH & COMP SCI,DK-5230 ODENSE,DENMARK
关键词
D O I
10.1016/0012-365X(95)00272-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multipartite tournament is an orientation of a complete k-partite graph for some k greater than or equal to 2. A factor of a digraph D is a collection of vertex disjoint cycles covering all the vertices of D. We show that there is no degree of strong connectivity which together with the existence of a factor will guarantee that a multipartite tournament is Hamiltonian. Our main result is a sufficient condition for a multipartite tournament to be Hamiltonian. We show that this condition is general enough to provide easy proofs of many existing results on paths and cycles in multipartite tournaments. Using this condition, we obtain a best possible lower bound on the length of a longest cycle in any strongly connected multipartite tournament.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 16 条
[1]   A POLYNOMIAL ALGORITHM FOR THE 2-PATH PROBLEM FOR SEMICOMPLETE DIGRAPHS [J].
BANGJENSEN, J ;
THOMASSEN, C .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (03) :366-376
[2]  
Beineke L. W., 1988, SELECTED TOPICS GRAP, V3
[3]  
BEINEKE LW, 1981, J LONDON MATH SOC LE, V52, P41
[4]   DICONNECTED ORIENTATIONS AND A CONJECTURE OF LASVERGNAS [J].
BONDY, JA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 14 (NOV) :277-282
[5]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[6]   FINDING A LONGEST PATH IN A COMPLETE MULTIPARTITE DIGRAPH [J].
GUTIN, G .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (02) :270-273
[7]   CYCLES AND PATHS IN SEMICOMPLETE MULTIPARTITE DIGRAPHS, THEOREMS, AND ALGORITHMS - A SURVEY [J].
GUTIN, G .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :481-505
[8]  
GUTIN G, 1993, THESIS TEL AVIV U
[9]  
GUTIN G, 1984, VESTSI ACAD NAVU FMN, P99
[10]  
GUTIN G, 1988, KIBERNETICA, P107