Optomechanical cooling and self-stabilization of a waveguide coupled to a whispering-gallery-mode resonator

被引:14
作者
Pennetta, Riccardo [1 ]
Xie, Shangran [1 ]
Zeltner, Richard [1 ]
Hammer, Jonas [1 ,2 ]
Russell, Philip St J. [1 ,2 ]
机构
[1] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ, Dept Phys, Staudtstr 2, D-91058 Erlangen, Germany
关键词
Natural frequencies - Optical resonators - Stabilization - Laser cooling - Optomechanics - Whispering gallery modes - Q factor measurement - Waveguides;
D O I
10.1364/PRJ.380151
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser cooling of mechanical degrees of freedom is one of the most significant achievements in the field of optomechanics. Here, we report, for the first time to the best of our knowledge, efficient passive optomechanical cooling of the motion of a freestanding waveguide coupled to a whispering-gallery-mode (WGM) resonator. The waveguide is an 8 mm long glass-fiber nanospike, which has a fundamental flexural resonance at Omega/2 pi = 2.5 kHz and a Q-factor of 1.2 x 10(5). Upon launching similar to 250 mu W laser power at an optical frequency dose to the WGM resonant frequency, we observed cooling of the nanospike resonance from room temperature down to 1.8 K. Simultaneous cooling of the first higher-order mechanical mode is also observed. The strong suppression of the overall Brownian motion of the nanospike, observed as an 11.6 dB reduction in its mean square displacement, indicates strong optomechanical stabilization of linear coupling between the nanospike and the cavity mode. The cooling is caused predominantly by a combination of photothermal effects and optical forces between nanospike and WGM resonator. The results are of direct relevance in the many applications of WGM resonators, induding atom physics, optomechanics, and sensing. (C) 2020 Chinese Laser Press
引用
收藏
页码:844 / 851
页数:8
相关论文
共 31 条
[1]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[2]   Dynamical thermal behavior and thermal self-stability of microcavities [J].
Carmon, T ;
Yang, L ;
Vahala, KJ .
OPTICS EXPRESS, 2004, 12 (20) :4742-4750
[3]   Cooling of a mirror by radiation pressure [J].
Cohadon, PF ;
Heidmann, A ;
Pinard, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3174-3177
[4]   Waveguide-coupled single collective excitation of atomic arrays [J].
Corzo, Neil V. ;
Raskop, Jeremy ;
Chandra, Aveek ;
Sheremet, Alexandra S. ;
Gouraud, Baptiste ;
Laurat, Julien .
NATURE, 2019, 566 (7744) :359-+
[5]   Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces [J].
Eichenfield, Matt ;
Michael, Christopher P. ;
Perahia, Raviv ;
Painter, Oskar .
NATURE PHOTONICS, 2007, 1 (07) :416-422
[6]   Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics (vol 102, 207209, 2009) [J].
Elste, Florian ;
Clerk, A. A. ;
Girvin, S. M. .
PHYSICAL REVIEW LETTERS, 2009, 103 (14)
[7]   Whispering gallery mode sensors [J].
Foreman, Matthew R. ;
Swaim, Jon D. ;
Vollmer, Frank .
ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (02) :168-240
[8]   Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle [J].
Gieseler, Jan ;
Deutsch, Bradley ;
Quidant, Romain ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[9]   A dissipative self-sustained optomechanical resonator on a silicon chip [J].
Huang, J. G. ;
Li, Y. ;
Chin, L. K. ;
Cai, H. ;
Gu, Y. D. ;
Karim, M. F. ;
Wu, J. H. ;
Chen, T. N. ;
Yang, Z. C. ;
Hao, Y. L. ;
Qiu, C. W. ;
Liu, A. Q. .
APPLIED PHYSICS LETTERS, 2018, 112 (05)
[10]   Heating in Nanophotonic Traps for Cold Atoms [J].
Huemmer, Daniel ;
Schneeweiss, Philipp ;
Rauschenbeutel, Arno ;
Romero-Isart, Oriol .
PHYSICAL REVIEW X, 2019, 9 (04)