Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice

被引:13
作者
Boaro, Alessandro [1 ,3 ]
Kaczmarzyk, Jakub R. [2 ,4 ]
Kavouridis, Vasileios K. [1 ]
Harary, Maya [1 ,5 ]
Mammi, Marco [1 ]
Dawood, Hassan [1 ,6 ]
Shea, Alice [7 ]
Cho, Elise Y. [1 ]
Juvekar, Parikshit [6 ]
Noh, Thomas [6 ]
Rana, Aakanksha [1 ,2 ]
Ghosh, Satrajit [2 ]
Arnaout, Omar [1 ,6 ]
机构
[1] Harvard Med Sch, Computat Neurosci Outcomes Ctr, Brigham & Womens Hosp, Boston, MA 02115 USA
[2] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[3] Univ Verona, Dept Neurosci Biomed & Movement Sci, Sect Neurosurg, Verona, Italy
[4] SUNY Stony Brook, Med Scientist Training Program, Sch Med, Stony Brook, NY USA
[5] Univ Calif Los Angeles, Dept Neurosurg, Los Angeles, CA USA
[6] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA USA
[7] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
关键词
ARTIFICIAL-INTELLIGENCE; CANCER;
D O I
10.1038/s41598-022-19356-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate brain meningioma segmentation and volumetric assessment are critical for serial patient follow-up, surgical planning and monitoring response to treatment. Current gold standard of manual labeling is a time-consuming process, subject to inter-user variability. Fully-automated algorithms for meningioma segmentation have the potential to bring volumetric analysis into clinical and research workflows by increasing accuracy and efficiency, reducing inter-user variability and saving time. Previous research has focused solely on segmentation tasks without assessment of impact and usability of deep learning solutions in clinical practice. Herein, we demonstrate a three-dimensional convolutional neural network (3D-CNN) that performs expert-level, automated meningioma segmentation and volume estimation on MRI scans. A 3D-CNN was initially trained by segmenting entire brain volumes using a dataset of 10,099 healthy brain MRIs. Using transfer learning, the network was then specifically trained on meningioma segmentation using 806 expert-labeled MRIs. The final model achieved a median performance of 88.2% reaching the spectrum of current inter-expert variability (82.6-91.6%). We demonstrate in a simulated clinical scenario that a deep learning approach to meningioma segmentation is feasible, highly accurate and has the potential to improve current clinical practice.
引用
收藏
页数:9
相关论文
共 42 条
[1]  
Abadi M., PREPRINT
[2]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[3]  
Backer-Grondahl T, 2012, INT J CLIN EXP PATHO, V5, P231
[4]   Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study [J].
Banzato, Tommaso ;
Causin, Francesco ;
Della Puppa, Alessandro ;
Cester, Giacomo ;
Mazzai, Linda ;
Zotti, Alessandro .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (04) :1152-1159
[5]   Treatment and survival of patients with nonmalignant intracranial meningioma: results from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute Clinical article [J].
Cahill, Kevin S. ;
Claus, Elizabeth B. .
JOURNAL OF NEUROSURGERY, 2011, 115 (02) :259-267
[6]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[7]  
Cicek O., PREPRINT
[8]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[9]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[10]  
DUBUISSON MP, 1994, INT C PATT RECOG, P566, DOI 10.1109/ICPR.1994.576361