Classification Model of Network Intrusion using Weighted Extreme Learning Machine

被引:0
|
作者
Srimuang, Worachai [1 ]
Intarasothonchun, Silada [1 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Comp Sci, Hardware Human Interface & Commun Comm Lab H2I, Khon Kaen 40002, Thailand
关键词
Weighted Extremes Learning Machine; Intrusion Detection System; Imbalance; Trade-off constant C;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The development of a model classification intrusion detection using Weighted Extreme Learning Machine was examined with KDD'99 data set ad 4 types of main attack : Denial of Service Attack (DoS), User to Root Attack (U2R), Remote to Local Attack (R2L), and Probing Attack, when comparing the effectiveness of working process of the method presented to SVM+GA[6] and ELM, found that weighted technique using RBF Kernel activation function which the value of trade-off constant C was at 25, which was presented the average effectiveness of accuracy to be more effective than other 2 techniques, giving accuracy effectiveness value of DoS = 99.95%, U2R = 99.97%, R2L = 93.64% and Probing = 96.64 %, meanwhile it used less time for working. This could be an interesting technique to be applied to enhance the effectiveness of security of system surveillances in monitoring to be able to remedy the situations on time.
引用
收藏
页码:190 / 194
页数:5
相关论文
共 50 条
  • [31] Network Intrusion Detection using Hybrid Machine Learning
    Chuang, Po-Jen
    Li, Si-Han
    2019 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2019, : 289 - 293
  • [32] Weighted extreme learning machine for imbalance learning
    Zong, Weiwei
    Huang, Guang-Bin
    Chen, Yiqiang
    NEUROCOMPUTING, 2013, 101 : 229 - 242
  • [33] On the use of Machine Learning Approaches for the Early Classification in Network Intrusion Detection
    Guarino, Idio
    Bovenzi, Giampaolo
    Di Monda, Davide
    Aceto, Giuseppe
    Ciuonzo, Domenico
    Pescap, Antonio
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2022), 2022,
  • [34] Deep Weighted Extreme Learning Machine
    Tianlei Wang
    Jiuwen Cao
    Xiaoping Lai
    Badong Chen
    Cognitive Computation, 2018, 10 : 890 - 907
  • [35] Deep Weighted Extreme Learning Machine
    Wang, Tianlei
    Cao, Jiuwen
    Lai, Xiaoping
    Chen, Badong
    COGNITIVE COMPUTATION, 2018, 10 (06) : 890 - 907
  • [36] Cancer Classification using improved Extreme Learning Machine
    Shreya, Ankita
    Vipsita, Swati
    Baliarsingh, Santos Kumar
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 203 - 210
  • [37] Classification of Hippocampal Region using Extreme Learning Machine
    Zaini, Muhammad Hafiz Md
    Shapiai, Mohd Ibrahim
    Mohamed, Ahmad Rithauddin
    Mokhtar, Norrima
    Ibrahim, Zuwairie
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P735 - P742
  • [38] Protein sequence classification using extreme learning machine
    Wang, DH
    Huang, GB
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1406 - 1411
  • [39] Classification of JPEG Files by Using Extreme Learning Machine
    Ali, Rabei Raad
    Mohamad, Kamaruddin Malik
    Jamel, Sapiee
    Khalid, Shamsul Kamal Ahmad
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2018), 2018, 700 : 33 - 42
  • [40] Weighted Extreme Learning Machine for Dengue Detection with Class-imbalance Classification
    Nadda, Wanchaloem
    Boonchieng, Waraporn
    Boonchieng, Ekkarat
    2019 IEEE HEALTHCARE INNOVATIONS AND POINT OF CARE TECHNOLOGIES (HI-POCT), 2019, : 151 - 154