Effect of Mo on the Mechanical and Corrosion Behaviors in Non-Equal Molar AlCrFeMnNi BCC High-Entropy Alloys

被引:19
作者
Hsu, Wei-Chen [1 ]
Kao, Wei-Pin [1 ]
Yeh, Jien-Wei [1 ,2 ]
Tsai, Che-Wei [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, High Entropy Mat Ctr, Hsinchu 30013, Taiwan
关键词
high-entropy alloys; body centered cubic; NiAl precipitates; high-temperature tensile; corrosion; EIS; AUSTENITIC STAINLESS-STEELS; TENSILE PROPERTIES; HIGH-STRENGTH; X-RAY; MICROSTRUCTURE; RESISTANCE; MOLYBDENUM; MN; IMPROVEMENT; DEFORMATION;
D O I
10.3390/ma15030751
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Co-free body-centered cubic (bcc) high-entropy alloys (HEAs) are prepared, and the elevated mechanical property and corrosion property of the Al0.4CrFe1.5MnNi0.5Mox (x = 0 and 0.1) alloys are studied. The Vickers hardness (HV) of the as-homogenized state is between HV 350 and HV 400. Both alloys are provided with nano-scale NiAl-rich B2 precipitates which contribute to the strength at high-temperature. In addition, adding Mo in the present alloy strengthens by sigma phase. Al0.4CrFe1.5MnNi0.5Mo0.1 exhibited outstanding tensile properties, with a yield strength of 413 MPa and ultimate tensile strength of 430 MPa in the elevated tensile test at 600 degrees C, which is better than that of Al0.4CrFe1.5MnNi0.5 alloy. Through potentiodynamic polarization testing in 0.5 M H2SO4 solution and electrochemical impedance spectroscopy (EIS), it is shown that adding Mo can effectively reduce the corrosion current density and improve the impedance of passive film, since the passivation layer is formed and stable.
引用
收藏
页数:14
相关论文
共 86 条
[11]   Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J].
Chou, Y. L. ;
Wang, Y. C. ;
Yeh, J. W. ;
Shih, H. C. .
CORROSION SCIENCE, 2010, 52 (10) :3481-3491
[12]   The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments [J].
Chou, Y. L. ;
Yeh, J. W. ;
Shih, H. C. .
CORROSION SCIENCE, 2010, 52 (08) :2571-2581
[13]   A BIPOLAR MODEL OF THE PASSIVITY OF STAINLESS-STEEL - THE ROLE OF MO ADDITION [J].
CLAYTON, CR ;
LU, YC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (12) :2465-2473
[14]   Premature corrosion failure of a 316L stainless steel plate due to the presence of sigma phase [J].
Conejero, O. ;
Palacios, M. ;
Rivera, S. .
ENGINEERING FAILURE ANALYSIS, 2009, 16 (03) :699-704
[15]   High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy) [J].
Daoud, H. M. ;
Manzoni, A. M. ;
Wanderka, N. ;
Glatzel, U. .
JOM, 2015, 67 (10) :2271-2277
[16]   ON KINKED SCREW DISLOCATIONS IN THE BCC LATTICE .2. KINK ENERGIES AND DOUBLE KINKS [J].
DUESBERY, MS .
ACTA METALLURGICA, 1983, 31 (10) :1759-1770
[17]   Mechanical properties and hardening mechanism of Fe-Al-Ni single crystals containing NiAl precipitates [J].
Edahiro, T. ;
Kouzai, K. ;
Yasuda, H. Y. .
ACTA MATERIALIA, 2013, 61 (05) :1716-1725
[18]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[19]   Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J].
Gao, Xuzhou ;
Lu, Yiping ;
Zhang, Bo ;
Liang, Ningning ;
Wu, Guanzhong ;
Sha, Gang ;
Liu, Jizi ;
Zhao, Yonghao .
ACTA MATERIALIA, 2017, 141 :59-66
[20]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158