A combinatorial condition and Boolean functions with optimal algebraic immunity

被引:4
作者
Jin Qingfang [1 ]
Liu Zhuojun [2 ]
Wu Baofeng [3 ]
Zhang Xiaoming [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mech, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
关键词
Algebraic degree; algebraic immunity; balancedness; Bent function; Boolean function; nonlinearity; STREAM CIPHERS; ATTACKS; CONSTRUCTION;
D O I
10.1007/s11424-014-2133-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper first proposes an infinite class of 2k-variable Boolean functions with high nonlinearity and high algebraic degree. Then an infinite class of balanced Boolean functions are proposed by modifying the above Boolean functions. This class of balanced Boolean functions have optimal algebraic degree and high nonlinearity. Both classes have optimal algebraic immunity based on a general combinatorial conjecture.
引用
收藏
页码:725 / 742
页数:18
相关论文
共 23 条
[1]  
[Anonymous], IACR CRYPTOLOGY EPRI
[2]  
Armknecht F, 2004, LECT NOTES COMPUT SC, V3017, P65
[3]  
Carlet C, 2009, 2009606 CRYPT EPRINT
[4]  
Carlet C, 2006, 2006149 CRYPT EPRINT
[5]  
Carlet C., 2010, Boolean functions for cryptography and error-correcting codes, P257, DOI 10.1017/CBO9780511780448.011
[6]   Algebraic immunity for cryptographically significant Boolean functions: Analysis and construction [J].
Carlet, Claude ;
Dalai, Deepak Kumar ;
Gupta, Kishan Chand ;
Maitra, Subhamoy .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) :3105-3121
[7]   Further properties of several classes of Boolean functions with optimum algebraic immunity [J].
Carlet, Claude ;
Zeng, Xiangyong ;
Li, Chunlei ;
Hu, Lei .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 52 (03) :303-338
[8]  
Carlet C, 2008, LECT NOTES COMPUT SC, V5350, P425, DOI 10.1007/978-3-540-89255-7_26
[9]  
Courtois NT, 2003, LECT NOTES COMPUT SC, V2729, P176
[10]  
Courtois NT, 2003, LECT NOTES COMPUT SC, V2656, P345