Comments on "Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control" [Commun Nonlinear Sci Numer Simulat 2010;15:3754-3762]

被引:5
作者
Asheghan, Mohammad Mostafa [1 ]
Beheshti, Mohammad Taghi Hamidi [1 ]
Tavazoei, Mohammad Saleh [2 ]
机构
[1] Tarbiat Modares Univ, Dept Elect Engn, Control & Commun Networks Lab, Tehran, Iran
[2] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
关键词
Chaos synchronization; Robust synchronization; Lyapunov theorem; Fractional order systems;
D O I
10.1016/j.cnsns.2010.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note some points to paper [L. Pan, W. Zhou, J. Fang, D. Li, Synchronization and antisynchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control, Commun Nonlinear Sci Numer Simulat 2010:15:3754-3762] are presented. Hereby, we illustrate that the way that authors in [1] treat with fractional version of Lyapunov stability theorem suffers lack of a correct justification. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2656 / 2657
页数:2
相关论文
共 13 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[3]   The study of properties of CdTe thin films deposited in Ar/O2 atmosphere [J].
Li, Y. ;
Li, B. ;
Feng, L. ;
Zheng, J. ;
Li, W. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 45 (02)
[4]   Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1810-1821
[5]  
Lyapunov A.M., 1966, Stability of Motion
[6]   Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control [J].
Pan, Lin ;
Zhou, Wuneng ;
Fang, Jian'an ;
Li, Dequan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) :3754-3762
[7]   Generalized projective synchronization of fractional order chaotic systems [J].
Peng, Guojun ;
Jiang, Yaolin ;
Chen, Fang .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) :3738-3746
[8]   Dynamical models of happiness with fractional order [J].
Song, Lei ;
Xu, Shiyun ;
Yang, Jianying .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) :616-628
[9]   Synchronization of chaotic fractional-order systems via active sliding mode controller [J].
Tavazoei, Mohammad Saleh ;
Haeri, Mohammad .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) :57-70
[10]   A Lyapunov approach to the stability of fractional differential equations [J].
Trigeassou, J. C. ;
Maamri, N. ;
Sabatier, J. ;
Oustaloup, A. .
SIGNAL PROCESSING, 2011, 91 (03) :437-445