Dissipativity and stability for a nonlinear differential equation with distributed order symmetrized fractional derivative

被引:5
作者
Atanackovic, Teodor M. [1 ]
Dolicanin, Diana [2 ]
Konjik, Sanja [1 ]
Pilipovic, Stevan [1 ]
机构
[1] Univ Novi Sad, Novi Sad 21000, Serbia
[2] Univ Pristina, Pristina, Serbia
关键词
Fractional derivatives; Distributions; Dissipation inequality; Stability of solutions;
D O I
10.1016/j.aml.2011.01.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the solvability, dissipativity and stability for the equation d(2)/dt(2) u (t) + b integral(1)(0) +/- epsilon(alpha)(T)u(t)phi(alpha) d alpha + F(u(t)) = 0. t is an element of vertical bar 0, T vertical bar. T > 0. where integral(1)(0) +/- epsilon(alpha)(T)u(t)phi(alpha) d alpha is the distributed order symmetrized Caputo fractional derivative of u, phi(alpha), alpha is an element of (0, 1), is a positive integrable function or a distribution of the form Sigma(n)(i=0) c(alpha) delta(alpha-alpha(i)), 0 <= alpha(0) < alpha(1) < ... < alpha(n) <= 1, c(alpha i) >= 0, i = 0.1, .... n, and F(u), u is an element of R, is a locally Lipschitz continuous function on R. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1020 / 1025
页数:6
相关论文
共 15 条
[1]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], APPL MATH LETT
[4]  
[Anonymous], 2004, FRACT CALC APPL ANAL
[5]   Nonlocal Cauchy problem for abstract fractional semilinear evolution equations [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4471-4475
[6]   A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives [J].
Baleanu, Dumitru ;
Trujillo, Juan I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (05) :1111-1115
[7]   Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws [J].
Enelund, M ;
Mähler, L ;
Runesson, K ;
Josefson, BL .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1999, 36 (16) :2417-2442
[8]   Fractional Noether's theorem in the Riesz-Caputo sense [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :1023-1033
[9]   The fundamental solutions for the fractional diffusion-wave equation [J].
Mainardi, F .
APPLIED MATHEMATICS LETTERS, 1996, 9 (06) :23-28
[10]  
Podlubny I., 1999, FRACTIONAL DIFFERENT