Estimating the structural dimension of regressions via parametric inverse regression

被引:104
作者
Bura, E
Cook, RD
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[2] Univ Minnesota, St Paul, MN 55108 USA
关键词
asymptotic test for dimension; dimension reduction; inverse regression; parametric inverse regression; sliced inverse regression;
D O I
10.1111/1467-9868.00292
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new estimation method for the dimension of a regression at the outset of an analysis is proposed. A linear subspace spanned by projections of the regressor vector X, which contains part or all of the modelling information for the regression of a vector Y on X, and its dimension are estimated via the means of parametric inverse regression. Smooth parametric curves are fitted to the p inverse regressions via a multivariate linear model. No restrictions are placed on the distribution of the regressors. The estimate of the dimension of the regression is based on optimal estimation procedures. A simulation study shows the method to be more powerful than sliced inverse regression in some situations.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 27 条
[1]  
Billingsley P., 1995, Probability and measure, VThird
[2]  
BUNKE H, 1986, STAT INFERENCE LINEA, V1
[3]  
BURA E, 1999, IN PRESS J AM STAT A
[4]  
BURA E, 1996, THESIS U MINNESOTA S
[5]  
CAMDEN M, 1989, DATA BUNDLE
[6]  
Cook D.R., 1999, APPL REGRESSION INCL
[7]  
Cook R.D., 1994, INTRO REGRESSION GRA
[8]  
Cook R. D., 1998, WILEY PROB STAT
[9]   REWEIGHTING TO ACHIEVE ELLIPTICALLY CONTOURED COVARIATES IN REGRESSION [J].
COOK, RD ;
NACHTSHEIM, CJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) :592-599
[10]  
COOK RD, 1994, AMERICAN STATISTICAL ASSOCIATION 1994 PROCEEDINGS OF THE SECTION ON PHYSICAL AND ENGINEERING SCIENCES, P18