Spatio-Temporal Similarity Search Method for Disaster Estimation

被引:0
作者
Hayashi, Hideki [1 ]
Asahara, Akinori [1 ]
Sugaya, Natsuko [2 ]
Ogawa, Yuichi [2 ]
Tomita, Hitoshi [3 ]
机构
[1] Hitachi Ltd, Ctr Technol Innovat Syst Engn, Res & Dev Grp, 1-280 Higashi Koigakubo, Kokubunji, Tokyo 1858601, Japan
[2] Hitachi Ltd, Telecommun Syst Co, IT Platform Div Grp, Totsuka Ku, 292 Yoshida Cho, Yokohama, Kanagawa 2440817, Japan
[3] Hitachi Ltd, Social Innovat Business Promot Div, Chiyoda Ku, Akihabara Daibiru Bldg,18-13 Soto Kanda 1-Chome, Tokyo 1018608, Japan
来源
PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA | 2015年
关键词
disaster management; spatio-temporal database; spatio-temporal similarity; time-series grid data;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For fast disaster estimation after a large-scale disaster occurs, this paper presents a fast spatio-temporal similarity search method that searches a database storing many scenarios of disaster simulation results represented by time-series grid data for some scenarios similar to insufficient observed data sent from sensors. The proposed method efficiently processes spatio-temporal intersection by using a spatio-temporal index to reduce the processing time for the spatio-temporal similarity search. Additionally, this paper presents the efficient spatio-temporal range search method by using this spatio-temporal index. The spatio-temporal range search is needed for the analysis and visualization in order to grasp a damage situation after spatio-temporal similarity search returns some scenarios similar to observed data. The results of the performance evaluation show that the proposed method has a shorter response time for the spatio-temporal similarity search than two conventional methods that use a temporal index and a spatial index. They also show that the response time is within about 30 seconds when the proposed method searches the database storing 50 billion time-series grid data items for some scenarios similar to 100 observed data items. As a result, the proposed method can be applied to a real environment in which a spatio-temporal similarity search needs to processed within 10 minutes. Additionally, the evaluation results show that the spatio-temporal range search method by using the spatio-temporal index can be also applied to a real environment.
引用
收藏
页码:2462 / 2469
页数:8
相关论文
共 50 条
[31]   The design and realization of a socio-economic statistical spatio-temporal database [J].
Yang, Cankun ;
Li, Xiaojuan ;
Liu, Qiang ;
Zhao, Huimin ;
Zhang, Jia ;
Zhang, Haibo .
SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840
[32]   Efficient Multi-object Detection for Complexity Spatio-Temporal Scenes [J].
Wang, Kai ;
Song, Xiangyu ;
Sun, Shijie ;
Zhao, Juan ;
Xu, Cai ;
Song, Huansheng .
WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 :186-200
[33]   The Research and Design of Student Psychology Predicting System Based on Spatio-temporal Database [J].
Liu, Yu-lu ;
Xiong, Jiang ;
Zhao, Yong-jian .
INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 :1716-1720
[34]   Comparing two spatio-temporal query languages: SQLST and Guting's language [J].
Perez Montoya, Luis Miguel ;
Moreno Arboleda, Francisco Javier .
INGENIERIA E INVESTIGACION, 2008, 28 (03) :138-144
[35]   Concept Model Design of Spatio-Temporal Database Based on Geo-ontology [J].
Huang, Yongqi ;
Cui, Weihong ;
Wu, Xiaochun ;
Yang, Xiaodong ;
Wu, Mengquan .
ITESS: 2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES, PT 1, 2008, :621-627
[36]   Spatio-temporal behaviour after an earthquake: a case study of Kawaguchi town, Japan [J].
Gismondi, Matteo ;
Huisman, Otto .
DISASTER PREVENTION AND MANAGEMENT, 2012, 21 (03) :370-385
[37]   STOQL: An ODMG-Based spatio-temporal object model and query language [J].
Huang, B ;
Claramunt, C .
ADVANCES IN SPATIAL DATA HANDLING, 2002, :225-237
[38]   CTPR*-Link Tree :An Efficient Implementation on Indexing the Moving Object in Spatio-Temporal Database [J].
ZHOU Xing LIU Zhaohong XIA Ying GE Junwei BAE HaeyoungSinoKorea Chongqing GIS Research Center Chongqing University of Posts and Telecommunications Chongqing PRChina Department of Computer Science Engineering INHA University Inchon Korea .
TheJournalofChinaUniversitiesofPostsandTelecommunications, 2005, (04) :94-97+107
[39]   Dynamic Spatio-Temporal Tweet Mining for Event Detection: A Case Study of Hurricane Florence [J].
Mahdi Farnaghi ;
Zeinab Ghaemi ;
Ali Mansourian .
International Journal of Disaster Risk Science, 2020, 11 :378-393
[40]   Dynamic Spatio-Temporal Tweet Mining for Event Detection: A Case Study of Hurricane Florence [J].
Farnaghi, Mahdi ;
Ghaemi, Zeinab ;
Mansourian, Ali .
INTERNATIONAL JOURNAL OF DISASTER RISK SCIENCE, 2020, 11 (03) :378-393