Spatio-Temporal Similarity Search Method for Disaster Estimation

被引:0
作者
Hayashi, Hideki [1 ]
Asahara, Akinori [1 ]
Sugaya, Natsuko [2 ]
Ogawa, Yuichi [2 ]
Tomita, Hitoshi [3 ]
机构
[1] Hitachi Ltd, Ctr Technol Innovat Syst Engn, Res & Dev Grp, 1-280 Higashi Koigakubo, Kokubunji, Tokyo 1858601, Japan
[2] Hitachi Ltd, Telecommun Syst Co, IT Platform Div Grp, Totsuka Ku, 292 Yoshida Cho, Yokohama, Kanagawa 2440817, Japan
[3] Hitachi Ltd, Social Innovat Business Promot Div, Chiyoda Ku, Akihabara Daibiru Bldg,18-13 Soto Kanda 1-Chome, Tokyo 1018608, Japan
来源
PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA | 2015年
关键词
disaster management; spatio-temporal database; spatio-temporal similarity; time-series grid data;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For fast disaster estimation after a large-scale disaster occurs, this paper presents a fast spatio-temporal similarity search method that searches a database storing many scenarios of disaster simulation results represented by time-series grid data for some scenarios similar to insufficient observed data sent from sensors. The proposed method efficiently processes spatio-temporal intersection by using a spatio-temporal index to reduce the processing time for the spatio-temporal similarity search. Additionally, this paper presents the efficient spatio-temporal range search method by using this spatio-temporal index. The spatio-temporal range search is needed for the analysis and visualization in order to grasp a damage situation after spatio-temporal similarity search returns some scenarios similar to observed data. The results of the performance evaluation show that the proposed method has a shorter response time for the spatio-temporal similarity search than two conventional methods that use a temporal index and a spatial index. They also show that the response time is within about 30 seconds when the proposed method searches the database storing 50 billion time-series grid data items for some scenarios similar to 100 observed data items. As a result, the proposed method can be applied to a real environment in which a spatio-temporal similarity search needs to processed within 10 minutes. Additionally, the evaluation results show that the spatio-temporal range search method by using the spatio-temporal index can be also applied to a real environment.
引用
收藏
页码:2462 / 2469
页数:8
相关论文
共 50 条
[21]   A multidimensional approach to the representation of the spatio-temporal multi-granularity [J].
Gascuena, Concepcion M. ;
Cuadra, Dolores ;
Martinez, Paloma .
ICEIS 2006: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATIONAL SYSTEMS: DATABASES AND INFORMATION SYSTEMS INTEGRATION, 2006, :175-+
[22]   Spatio-temporal traffic video data archiving and retrieval system [J].
Hang Yue ;
Laurence R. Rilett ;
Peter Z. Revesz .
GeoInformatica, 2016, 20 :59-94
[23]   A semantic spatio-temporal model for the modelization of mobilities in urban setting [J].
Jin, Meihan ;
Claramunt, Christophe .
REVUE INTERNATIONALE DE GEOMATIQUE, 2018, 28 (03) :311-338
[24]   A Prototype Spatio-temporal Database Built On Top of Relational Database [J].
Tian, Yun ;
Ji, Yanqing ;
Scholer, Jesse .
2015 12TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY - NEW GENERATIONS, 2015, :14-19
[25]   Ship Damage Control as a Service Based on Spatio-temporal Database [J].
Zheng, Yi-cheng ;
Deng, Yong ;
Zhu, Qing-meng .
2014 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2014, :500-504
[26]   Spatio-temporal traffic video data archiving and retrieval system [J].
Yue, Hang ;
Rilett, Laurence R. ;
Revesz, Peter Z. .
GEOINFORMATICA, 2016, 20 (01) :59-94
[27]   Multimodal GeoAI: An integrated spatio-temporal topic-sentiment model for the analysis of geo-social media posts for disaster management [J].
Hanny, David ;
Resch, Bernd .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 139
[28]   A spatio-temporal index for aerial full waveform laser scanning data [J].
Laefer, Debra F. ;
Anh-Vu Vo ;
Bertolotto, Michela .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 :232-251
[29]   Multimodal Social Sensing for the Spatio-Temporal Evolution and Assessment of Nature Disasters [J].
Yu, Chen ;
Wang, Zhiguo .
SENSORS, 2024, 24 (18)
[30]   Efficient Multi-object Detection for Complexity Spatio-Temporal Scenes [J].
Wang, Kai ;
Song, Xiangyu ;
Sun, Shijie ;
Zhao, Juan ;
Xu, Cai ;
Song, Huansheng .
WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 :186-200