EXISTENCE AND UNIQUENESS FOR NON-MARKOVIAN TRIANGULAR BSDES

被引:2
作者
Jackson, J. O. E. [1 ]
Zitkovic, Gordan [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
  BSDE; non-Markovian BSDE system; triangular quadratic driver; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1137/21M1435689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove the existence and uniqueness of solutions to a class of quadratic backward results about diagonally quadratic BSDEs in the non-Markovian setting. As part of our analysis, we obtain new results about linear BSDEs with unbounded coefficients, which may be of independent interest. Through a nonuniqueness example, we answer a ``crucial open question"" raised by Harter and Richou by showing that the stochastic exponential of an n \times n matrix-valued bounded mean oscillation martingale need not satisfy a reverse Ho"\lder inequality.
引用
收藏
页码:1642 / 1666
页数:25
相关论文
共 28 条
[1]  
[Anonymous], 1989, STOCHASTIC CALCULUS, DOI [DOI 10.1007/978-3-642-75051-9, DOI 10.1093/aje/kwn380]
[2]  
[Anonymous], 1994, Lecture Notes in Mathematics
[3]   CONJUGATE CONVEX FUNCTIONS IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (02) :384-404
[4]   A simple constructive approach to quadratic BSDEs with or without delay [J].
Briand, Philippe ;
Elie, Romuald .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (08) :2921-2939
[5]   Equilibrium Pricing in Incomplete Markets Under Translation Invariant Preferences [J].
Cheridito, Patrick ;
Horst, Ulrich ;
Kupper, Michael ;
Pirvu, Traian A. .
MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (01) :174-195
[6]   CONSTRUCTING GAMMA-MARTINGALES WITH PRESCRIBED LIMIT, USING BACKWARDS SDE [J].
DARLING, RWR .
ANNALS OF PROBABILITY, 1995, 23 (03) :1234-1261
[7]   Harmonic analysis of stochastic equations and backward stochastic differential equations [J].
Delbaen, Freddy ;
Tang, Shanjian .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) :291-336
[8]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[9]   BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations [J].
El-Karoui, N ;
Hamadène, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 107 (01) :145-169
[10]   OPTIMAL INVESTMENT UNDER RELATIVE PERFORMANCE CONCERNS [J].
Espinosa, Gilles-Edouard ;
Touzi, Nizar .
MATHEMATICAL FINANCE, 2015, 25 (02) :221-257