Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov-Bohm Hamiltonians on the Square with Application to Minimal Partitions

被引:15
作者
Bonnaillie-Noel, V. [1 ]
Helffer, B. [2 ,3 ]
机构
[1] Univ Rennes 1, CNRS, UEB, IRMAR,ENS Cachan Bretagne, F-35170 Bruz, France
[2] Univ Paris Sud, Math Lab, F-91405 Orsay, France
[3] CNRS, F-91405 Orsay, France
关键词
spectral theory; minimal partitions; nodal domains; Aharonov-Bohm Hamiltonian; numerical simulations; SCHRODINGER-OPERATORS; DOMAINS;
D O I
10.1080/10586458.2011.565240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to presenting numerical simulations and a theoretical interpretation of results for determining the minimal k-partitions of a domain Omega as considered in [Helffer et al. 09]. More precisely, using the double-covering approach introduced by B. Helffer, M. and T. Hoffmann-Ostenhof, and M. Owen and further developed for questions of isospectrality by the authors in collaboration with T. Hoffmann-Ostenhof and S. Terracini in [Helffer et al. 09, Bonnaillie-Noel et al. 09], we analyze the variation of the eigenvalues of the one-pole Aharonov-Bohm Hamiltonian on the square and the nodal picture of the associated eigenfunctions as a function of the pole. This leads us to discover new candidates for minimal k-partitions of the square with a specific topological type and without any symmetric assumption, in contrast to our previous works [Bonnaillie-Noel et al. 10, Bonnaillie-Noel et al. 09]. This illustrates also recent results of B. Noris and S. Terracini; see [Noris and Terracini 10]. This finally supports or disproves conjectures for the minimal 3- and 5-partitions on the square.
引用
收藏
页码:304 / 322
页数:19
相关论文
共 14 条
[1]   A variational problem for the spatial segregation of reaction-diffusion systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (03) :779-815
[2]   On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formulae [J].
Conti, M ;
Terracini, S ;
Verzini, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (01) :45-72
[3]   An optimal partition problem related to nonlinear eigenvalues [J].
Conti, M ;
Terracini, S ;
Verzini, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 198 (01) :160-196
[4]   Minimization of the Renyi entropy production in the space-partitioning process [J].
Cybulski, O ;
Babin, V ;
Holyst, R .
PHYSICAL REVIEW E, 2005, 71 (04)
[5]  
Helfer B, 2010, CRM PROC & LECT NOTE, V52, P119
[6]   Nodal domains and spectral minimal partitions [J].
Helffer, B. ;
Hoffmann-Ostenhaf, T. ;
Terracini, S. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01) :101-138
[7]   Nodal sets for groundstates of Schrodinger operators with zero magnetic field in non simply connected domains [J].
Helffer, B ;
Hoffmann-Ostenhof, M ;
Hoffmann-Ostenhof, T ;
Owen, MP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 202 (03) :629-649
[8]  
Helffer B, 2010, INT MAT SER, V13, P153, DOI 10.1007/978-1-4419-1345-6_6
[9]   THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS [J].
Hillairet, Luc ;
Judge, Chris .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) :6231-6259
[10]   Spectral problems with mixed Dirichlet-Neumann boundary conditions: Isospectrality and beyond [J].
Jakobson, Dmitry ;
Levitin, Michael ;
Nadirashvili, Nikolai ;
Polterovich, Losif .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) :141-155