A Post-Processing Algorithm for miRNA Microarray Data

被引:17
作者
Nersisya, Stepan [1 ]
Shkurnikov, Maxim [2 ]
Poloznikov, Andrey [3 ,4 ]
Turchinovich, Andrey [5 ,6 ]
Burwinkel, Barbara [5 ,7 ]
Anisimov, Nikita [4 ]
Tonevitsky, Alexander [8 ,9 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Leninskie Gory 1, Moscow 119991, Russia
[2] Minist Hlth Russian Federat, Branch Natl Med Res Radiol Ctr, PA Hertsen Moscow Oncol Res Ctr, Moscow 125284, Russia
[3] Minist Hlth Russian Federat, Natl Med Res Radiol Ctr, Obninks 249036, Russia
[4] Far Eastern Fed Univ, Sch Biomed, Vladivostok 690922, Russia
[5] German Canc Res Ctr, Mol Epidemiol C080, D-69120 Heidelberg, Germany
[6] SciBerg E Kfm, D-68309 Mannheim, Germany
[7] Univ Hosp Heidelberg, D-69120 Heidelberg, Germany
[8] Higher Sch Econ, Fac Biol & Biotechnol, Moscow 117312, Russia
[9] Shemyakin Ovchinnikov Inst Bioorgan Chem RAS, Moscow 117997, Russia
关键词
miRNA microarrays; miRNome of breast cancer; TCGA; GENE-EXPRESSION;
D O I
10.3390/ijms21041228
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the main disadvantages of using DNA microarrays for miRNA expression profiling is the inability of adequate comparison of expression values across different miRNAs. This leads to a large amount of miRNAs with high scores which are actually not expressed in examined samples, i.e., false positives. We propose a post-processing algorithm which performs scoring of miRNAs in the results of microarray analysis based on expression values, time of discovery of miRNA, and correlation level between the expressions of miRNA and corresponding pre-miRNA in considered samples. The algorithm was successfully validated by the comparison of the results of its application to miRNA microarray breast tumor samples with publicly available miRNA-seq breast tumor data. Additionally, we obtained possible reasons why miRNA can appear as a false positive in microarray study using paired miRNA sequencing and array data. The use of DNA microarrays for estimating miRNA expression profile is limited by several factors. One of them consists of problems with comparing expression values of different miRNAs. In this work, we show that situation can be significantly improved if some additional information is taken into consideration in a comparison.
引用
收藏
页数:9
相关论文
共 18 条
  • [1] An estimate of the total number of true human miRNAs
    Alles, Julia
    Fehlmann, Tobias
    Fischer, Ulrike
    Backes, Christina
    Galata, Valentina
    Minet, Marie
    Hart, Martin
    Abu-Halima, Masood
    Graesser, Friedrich A.
    Lenhof, Hans-Peter
    Keller, Andreas
    Meese, Eckart
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (07) : 3353 - 3364
  • [2] Bassani Niccolo P, 2014, Microarrays (Basel), V3, P302, DOI 10.3390/microarrays3040302
  • [3] Dai XF, 2015, AM J CANCER RES, V5, P2929
  • [4] Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    Edgar, R
    Domrachev, M
    Lash, AE
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (01) : 207 - 210
  • [5] miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades
    Friedlaender, Marc R.
    Mackowiak, Sebastian D.
    Li, Na
    Chen, Wei
    Rajewsky, Nikolaus
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (01) : 37 - 52
  • [6] Comparison of normalization methods with microRNA microarray
    Hua, You-Jia
    Tu, Kang
    Tang, Zhong-Yi
    Li, Yi-Xue
    Mao, Hua-Sheng
    [J]. GENOMICS, 2008, 92 (02) : 122 - 128
  • [7] Comprehensive molecular portraits of human breast tumours
    Koboldt, Daniel C.
    Fulton, Robert S.
    McLellan, Michael D.
    Schmidt, Heather
    Kalicki-Veizer, Joelle
    McMichael, Joshua F.
    Fulton, Lucinda L.
    Dooling, David J.
    Ding, Li
    Mardis, Elaine R.
    Wilson, Richard K.
    Ally, Adrian
    Balasundaram, Miruna
    Butterfield, Yaron S. N.
    Carlsen, Rebecca
    Carter, Candace
    Chu, Andy
    Chuah, Eric
    Chun, Hye-Jung E.
    Coope, Robin J. N.
    Dhalla, Noreen
    Guin, Ranabir
    Hirst, Carrie
    Hirst, Martin
    Holt, Robert A.
    Lee, Darlene
    Li, Haiyan I.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Andrew J.
    Pleasance, Erin
    Robertson, A. Gordon
    Schein, Jacqueline E.
    Shafiei, Arash
    Sipahimalani, Payal
    Slobodan, Jared R.
    Stoll, Dominik
    Tam, Angela
    Thiessen, Nina
    Varhol, Richard J.
    Wye, Natasja
    Zeng, Thomas
    Zhao, Yongjun
    Birol, Inanc
    Jones, Steven J. M.
    Marra, Marco A.
    Cherniack, Andrew D.
    Saksena, Gordon
    Onofrio, Robert C.
    Pho, Nam H.
    [J]. NATURE, 2012, 490 (7418) : 61 - 70
  • [8] miRBase: from microRNA sequences to function
    Kozomara, Ana
    Birgaoanu, Maria
    Griffiths-Jones, Sam
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D155 - D162
  • [9] Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    Langmead, Ben
    Trapnell, Cole
    Pop, Mihai
    Salzberg, Steven L.
    [J]. GENOME BIOLOGY, 2009, 10 (03):
  • [10] Bias in recent miRBase annotations potentially associated with RNA quality issues
    Ludwig, Nicole
    Becker, Meike
    Schumann, Timo
    Speer, Timo
    Fehlmann, Tobias
    Keller, Andreas
    Meese, Eckart
    [J]. SCIENTIFIC REPORTS, 2017, 7