EQUIVALENCE BETWEEN EXPONENTIAL STABILIZATION AND OBSERVABILITY INEQUALITY FOR MAGNETIC EFFECTED PIEZOELECTRIC BEAMS WITH TIME-VARYING DELAY AND TIME-DEPENDENT WEIGHTS

被引:10
作者
Kong, Aowen [1 ]
Nonato, Carlos [2 ]
Liu, Wenjun [1 ]
Dos Santos, Manoel Jeremias [3 ]
Raposo, Carlos [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Univ Fed Bahia, Dept Math, Salvador, BA, Brazil
[3] Fed Univ Para, Fac Exact Sci & Technol, Manoel de Abreu St S-N, BR-68440000 Abaetetuba, Para, Brazil
[4] Univ Fed Sao Joao del Rei, Dept Math, BR-36307352 Sao Joao Del Rei, MG, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 06期
基金
中国国家自然科学基金;
关键词
Time dependent delay; exponential decay; piezoelectric beams; internal observability; TIMOSHENKO SYSTEM; ENERGY DECAY; WAVE-EQUATION; TERM; STABILITY; EXISTENCE; DYNAMICS;
D O I
10.3934/dcdsb.2021168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with system of magnetic effected piezoelectric beams with interior time-varying delay and time-dependent weights, in which the beam is clamped at the two side points subject to a single distributed state feedback controller with a time-varying delay. Under appropriate assumptions on the time-varying delay term and time-dependent weights, we obtain exponential stability estimates by using the multiplicative technique, and prove the equivalence between stabilization and observability.
引用
收藏
页码:2959 / 2978
页数:20
相关论文
共 38 条
  • [1] Piezoelectric field enhancement in III-V core-shell nanowires
    Al-Zahrani, Hanan Y. S.
    Pal, Joydeep
    Migliorato, Max A.
    Tse, Geoffrey
    Yu, Dapeng
    [J]. NANO ENERGY, 2015, 14 : 382 - 391
  • [2] GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS FOR A WAVE EQUATION WITH NON-CONSTANT DELAY AND NONLINEAR WEIGHTS
    Barros, Vanessa
    Nonato, Carlos
    Raposo, Carlos
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 205 - 220
  • [3] Benaissa A, 2014, ELECTRON J QUAL THEO, P1
  • [4] Active control of a beam using a piezoceramic element
    Blanguernon, A
    Léné, F
    Bernadou, M
    [J]. SMART MATERIALS & STRUCTURES, 1999, 8 (01) : 116 - 124
  • [5] Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms
    Chen, Miaomiao
    Liu, Wenjun
    Zhou, Weican
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (04) : 547 - 569
  • [6] Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics
    Damjanovic, D
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (09) : 1267 - 1324
  • [7] Multidomain boundary integral formulation for piezoelectric materials fracture mechanics
    Davì, G
    Milazzo, A
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (40-41) : 7065 - 7078
  • [8] A Timoshenko beam model for cantilevered piezoelectric energy harvesters
    Dietl, J. M.
    Wickenheiser, A. M.
    Garcia, E.
    [J]. SMART MATERIALS AND STRUCTURES, 2010, 19 (05)
  • [9] Long-time dynamics for a nonlinear Timoshenko system with delay
    Feng, Baowei
    Yang, Xin-Guang
    [J]. APPLICABLE ANALYSIS, 2017, 96 (04) : 606 - 625
  • [10] Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law
    Freitas, M. M.
    Ramos, A. J. A.
    Ozer, A. O.
    Almeida Junior, D. S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 891 - 927