Pursuit and Evasion Games for an Infinite System of Differential Equations

被引:8
作者
Ibragimov, Gafurjan [1 ,2 ,3 ]
Ferrara, Massimiliano [4 ,5 ]
Alias, Idham Arif [1 ,2 ]
Salimi, Mehdi [6 ]
Ismail, Nurzeehan [1 ,2 ]
机构
[1] Univ Putra Malaysia, Dept Math, Serdang, Malaysia
[2] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
[3] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, Calabria, Italy
[4] Univ Mediterranea Reggio Calabria, Dept Law, Econ & Human Sci & Decis Lab, Calabria, Italy
[5] Bocconi Univ, Dept Management & Technol, ICRIOS Invernizzi Ctr Res Innovat Org Strategy &, Milan, Italy
[6] St Francis Xavier Univ, Dept Math & Stat, Antigonish, NS, Canada
关键词
Differential game; Pursuit; Control; Strategy; Infinite system of differential equations; TIME;
D O I
10.1007/s40840-021-01176-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a linear pursuit differential game described by an infinite system of first-order differential equations in Hilbert space. The control functions of players are subject to geometric constraints. The pursuer attempts to bring the state of system from a given initial state to the origin for a finite time and the evader's purpose is opposite. We obtain a formula for the guaranteed pursuit time and construct a strategy for pursuer. Also, we obtain a formula for the guaranteed evasion time.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 39 条
[1]   Evasion Differential Game of Infinitely Many Evaders from Infinitely Many Pursuers in Hilbert Space [J].
Alias, Idham Arif ;
Ibragimov, Gafurjan ;
Rakhmanov, Askar .
DYNAMIC GAMES AND APPLICATIONS, 2017, 7 (03) :347-359
[2]  
Avdonin S.A., 1995, FAMILIES EXPONENTIAL
[3]   The time-optimal problem for evolutionary partial differential equations [J].
Azamov, A. A. ;
Ruziboyev, M. B. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2013, 77 (02) :220-224
[4]  
Berkovitz L.D., 1967, SURVEY DIFFERENTIAL, P373
[5]  
Butkovskiy A.G, 1969, Theory of optimal control of distributed parameter systems
[6]  
CHERNOUSKO FL, 1992, PMM-J APPL MATH MEC+, V56, P707, DOI 10.1016/0021-8928(92)90057-F
[7]  
Chikrii A. A., 1997, Conflict-Controlled Processes
[8]  
Daletskii Yu.L., 1974, Transl. Math. Monographs, V43
[9]  
Elliot, 1972, AM MATH SOC
[10]  
Fattorini H. O., 1964, J. SIAM Control Ser. A, V2, P54