Riemann-Hilbert problem for scalar Fuchsian equations and related problems

被引:2
作者
V'yugin, I. V. [1 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Fuchsian equations and systems; Riemann-Hilbert problem; monodromy; bundle; connection;
D O I
10.1070/RM2011v066n01ABEH004727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the Riemann-Hilbert problem for scalar Fuchsian equations: the problem of constructing a scalar Fuchsian equation from a representation of the monodromy and a family of singular points. The results of Bolibrukh [5], van der Put and Singer [7], and the author [10], generalized to a unified theorem provided with a new proof, form the main part of the paper. Some possible applications of these results are also discussed.
引用
收藏
页码:35 / 62
页数:28
相关论文
共 16 条
[1]  
[Anonymous], 2004, Collected papers
[2]  
[Anonymous], GRUNDLEHREN MATH WIS
[3]  
Bolibrukh A.A., 2009, INVERSE MONODROMY PR
[4]  
Bolibrukh A. A., 2002, Proc. Steklov Inst. Math., V238, P47
[5]   On the tau function for the Schlesinger equation of isomonodromic deformations [J].
Bolibrukh, AA .
MATHEMATICAL NOTES, 2003, 74 (1-2) :177-184
[6]  
Bolibrukh AA., 1989, Mat. Zametki, V46, P118
[7]  
BOLIBRUKH AA, 1995, P STEKLOV I MATH, V206
[8]  
DELIGNE P, 1970, LECT NOTES MATH, V163, pC133
[9]   On the Riemann-Hilbert problem in dimension 4 [J].
Gladyshev A.I. .
Gladyshev, A.I., 2000, Kluwer Academic/Plenum Publ Corp, New York, NY, United States (06) :219-264
[10]   Various versions of the Riemann-Hilbert problem for linear differential equations [J].
Gontsov, R. R. ;
Poberezhnyi, V. A. .
RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (04) :603-639