Direct evidence of the stacking fault-mediated strain hardening phenomenon

被引:25
作者
Frank, M. [1 ,3 ]
Nene, S. S. [1 ,4 ]
Chen, Y. [2 ]
Thapliyal, S. [1 ]
Shukla, S. [1 ,5 ]
Liu, K. [1 ,6 ]
Sinha, S. [1 ,7 ]
Wang, T. [1 ,3 ]
Frost, M. J. [2 ]
An, K. [2 ]
Mishra, R. S. [1 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37830 USA
[3] Pacific Northwest Natl Lab, Energy Proc Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA
[4] Indian Inst Technol, Dept Met Engn, Jodhpur 342037, Rajasthan, India
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
[6] Natl Energy Technol Lab, 1450 SW Queen Ave, Albany, OR 97321 USA
[7] Indian Inst Technol BHU, Dept Met Engn, Varanasi 221005, Uttar Pradesh, India
关键词
HIGH-ENTROPY ALLOYS; GRAIN-SIZE; TRANSFORMATION; DISLOCATION; STRENGTH; STEEL;
D O I
10.1063/5.0062153
中图分类号
O59 [应用物理学];
学科分类号
摘要
Strain hardening in metallic materials delays catastrophic failure at stresses beyond the yield strength by the formation of obstacles to dislocation motion during plastic deformation. Conventional measurement of the instantaneous strain hardening rate originates from load-displacement data acquired during uniaxial mechanical testing, rather than the evolution of obstacles. In order to resolve hardening from the perspective of the very obstacles that cause strengthening, we used an in situ neutron diffraction experimental approach to determine the strain hardening rate based upon real-time measurement of stacking fault interspacing during plastic deformation. Results provide clear evidence of the evolving contribution of obstacles during plastic deformation. The collapse of interspacing between multiple obstacle types enabled immense strain hardening in a Fe38.5Mn20Cr15Co20Si5Cu1.5 high entropy alloy leading to a true tensile strength of similar to 1.7 GPa along with elongation of similar to 35% at room temperature. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 33 条
[11]   Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging [J].
Gutierrez-Urrutia, I. ;
Raabe, D. .
ACTA MATERIALIA, 2011, 59 (16) :6449-6462
[12]   The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel [J].
Gutierrez-Urrutia, I. ;
Zaefferer, S. ;
Raabe, D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (15) :3552-3560
[13]   Physics and model of strengthening by parallel stacking faults [J].
Jian, W. W. ;
Cheng, G. M. ;
Xu, W. Z. ;
Koch, C. C. ;
Wang, Q. D. ;
Zhu, Y. T. ;
Mathaudhu, S. N. .
APPLIED PHYSICS LETTERS, 2013, 103 (13)
[14]   Ultrastrong Mg Alloy via Nano-spaced Stacking Faults [J].
Jian, W. W. ;
Cheng, G. M. ;
Xu, W. Z. ;
Yuan, H. ;
Tsai, M. H. ;
Wang, Q. D. ;
Koch, C. C. ;
Zhu, Y. T. ;
Mathaudhu, S. N. .
MATERIALS RESEARCH LETTERS, 2013, 1 (02) :61-66
[15]   Physics and phenomenology of strain hardening: the FCC case [J].
Kocks, UF ;
Mecking, H .
PROGRESS IN MATERIALS SCIENCE, 2003, 48 (03) :171-273
[16]  
Kocks UF, 1993, solid state phenom, DOI [DOI 10.4028/WWW.SCIENTIFIC.NET/SSP.35-36.1, 10.4028/www.scientific.net/SSP.35-36.1]
[17]   Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties [J].
Li, Zhiming ;
Raabe, Dierk .
JOM, 2017, 69 (11) :2099-2106
[18]   Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J].
Li, Zhiming ;
Pradeep, Konda Gokuldoss ;
Deng, Yun ;
Raabe, Dierk ;
Tasan, Cemal Cem .
NATURE, 2016, 534 (7606) :227-+
[19]   Extremely high fatigue resistance in an ultrafine grained high entropy alloy [J].
Liu, K. ;
Nene, S. S. ;
Frank, M. ;
Sinha, S. ;
Mishra, R. S. .
APPLIED MATERIALS TODAY, 2019, 15 :525-530
[20]   The α-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: Dependence on slip mode, dislocation arrangement and density [J].
Mughrabi, Hael .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2016, 20 (06) :411-420