The asymptotic iteration method for the eigenenergies of the asymmetrical quantum anharmonic oscillator potentials v(x) = Σj=22αAjxj

被引:5
作者
Barakat, T. [1 ]
Al-Dossary, O. M. [1 ]
机构
[1] King Saud Univ, Dept Phys, Riyadh 11451, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2007年 / 22卷 / 01期
关键词
asymptotic iteration method; asymmetrical quantum anharmonic oscillator potentials; eigenenergies; exact results;
D O I
10.1142/S0217751X07034131
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The asymptotic iteration method is used to calculate the eigenenergies for the asymmetrical quantum anharmonic oscillator potentials V(x) = Sigma(2 alpha)(j=2)A(j)x(j), with (alpha = 2) for quartic, and (alpha = 3) for sextic asymmetrical quantum anharmonic oscillators. An adjustable parameter beta is introduced in the method to improve its rate of convergence. Comparing the present results with the exact numerical values, and with the numerical results of the earlier works, it is found that asymptotically, this method gives accurate results over the full range of parameter values A(j).
引用
收藏
页码:203 / 212
页数:10
相关论文
共 33 条
[1]   Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques -: art. no. 032120 [J].
Auberson, G ;
Peyranère, MC .
PHYSICAL REVIEW A, 2002, 65 (03) :9
[2]   Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method [J].
Barakat, T. ;
Abodayeh, K. ;
Al-Dossary, O. M. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (06) :583-590
[3]   The asymptotic iteration method for the angular spheroidal eigenvalues with arbitrary complex size parameter c [J].
Barakat, T. ;
Abodayeh, K. ;
Abdallah, B. ;
Al-Dossary, O. M. .
CANADIAN JOURNAL OF PHYSICS, 2006, 84 (02) :121-129
[4]   The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential V(x) = Ax2α + Bx2 [J].
Barakat, T .
PHYSICS LETTERS A, 2005, 344 (06) :411-417
[5]   The asymptotic iteration method for the angular spheroidal eigenvalues [J].
Barakat, T ;
Abodayeh, K ;
Mukheimer, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (06) :1299-1304
[6]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[7]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[8]   Quartic anharmonic oscillator and non-Hermiticity [J].
Chen, JL ;
Kwek, LC ;
Oh, CH .
PHYSICAL REVIEW A, 2003, 67 (01) :9
[9]   Iterative solutions to the Dirac equation [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
PHYSICAL REVIEW A, 2005, 72 (02)
[10]   Construction of exact solutions to eigenvalue problems by the asymptotic iteration method [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05) :1147-1155