Investigating the Origin of Enhanced C2+ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO2 Electroreduction

被引:312
作者
Lei, Qiong [1 ]
Zhu, Hui [1 ]
Song, Kepeng [1 ]
Wei, Nini [3 ]
Liu, Lingmei [1 ]
Zhang, Daliang [4 ,5 ]
Yin, Jun [6 ]
Dong, Xinglong [1 ,2 ]
Yao, Kexin [4 ,5 ]
Wang, Ning [1 ]
Li, Xinghua [1 ,7 ]
Davaasuren, Bambar [3 ]
Wang, Jianjian [4 ,5 ]
Han, Yu [1 ,2 ]
机构
[1] KAUST, Adv Membranes & Porous Mat Ctr, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] KAUST, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia
[3] KAUST, Imaging & Characterizat Core Lab, Thuwal 239556900, Saudi Arabia
[4] Chongqing Univ, Multiscale Porous Mat Ctr, Inst Adv Interdisciplinary Studies, Chongqing 400044, Peoples R China
[5] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
[6] KAUST, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[7] Northwest Univ, Sch Phys, Xian 710069, Peoples R China
关键词
CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC CONVERSION; ACTIVE-SITES; CU; CATALYSTS; MONOXIDE; SURFACE; ETHYLENE; INSIGHTS;
D O I
10.1021/jacs.9b11790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxide-/hydroxide-derived copper electrodes exhibit excellent selectivity toward C2+ products during the electrocatalytic CO2 reduction reaction (CO2RR). However, the origin of such enhanced selectivity remains controversial. Here, we prepared two Cu-based electrodes with mixed oxidation states, namely, HQ-Cu (containing Cu, Cu2O, CuO) and AN-Cu (containing Cu, Cu(OH)(2)). We extracted an ultrathin specimen from the electrodes using a focused ion beam to investigate the distribution and evolution of various Cu species by electron microscopy and electron energy loss spectroscopy. We found that at the steady stage of the CO2RR, the electrodes have all been reduced to Cu-0, regardless of the initial states, suggesting that the high C2+ selectivities are not associated with specific oxidation states of Cu. We verified this conclusion by control experiments in which HQ-Cu and AN-Cu were pretreated to fully reduce oxides/hydroxides to Cu-0, and the pretreated electrodes showed even higher C2+ selectivity compared with their unpretreated counterparts. We observed that the oxide/hydroxide crystals in HQ-Cu and AN-Cu were fragmented into nanosized irregular Cu grains under the applied negative potentials. Such a fragmentation process, which is the consequence of an oxidation-reduction cycle and does not occur in electropolished Cu, not only built an intricate network of grain boundaries but also exposed a variety of high-index facets. These two features greatly facilitated the C-C coupling, thus accounting for the enhanced C2+ selectivity. Our work demonstrates that the use of advanced characterization techniques enables investigating the structural and chemical states of electrodes in unprecedented detail to gain new insights into a widely studied system.
引用
收藏
页码:4213 / 4222
页数:10
相关论文
共 61 条
[1]   Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction [J].
Birhanu, Mulatu Kassie ;
Tsai, Meng-Che ;
Kahsay, Amaha Woldu ;
Chen, Chun-Tse ;
Zeleke, Tamene Simachew ;
Ibrahim, Kassa Belay ;
Huang, Chen-Jui ;
Su, Wei-Nien ;
Hwang, Bing-Joe .
ADVANCED MATERIALS INTERFACES, 2018, 5 (24)
[2]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[3]   Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction [J].
Cavalca, Filippo ;
Ferragut, Rafael ;
Aghion, Stefano ;
Eilert, Andre ;
Diaz-Morales, Oscar ;
Liu, Chang ;
Koh, Ai Leen ;
Hansen, Thomas W. ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (45) :25003-25009
[4]   The role of reticular chemistry in the design of CO2 reduction catalysts [J].
Diercks, Christian S. ;
Liu, Yuzhong ;
Cordova, Kyle E. ;
Yaghi, Omar M. .
NATURE MATERIALS, 2018, 17 (04) :301-307
[5]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[6]   Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction [J].
Eilert, Andre ;
Cavalca, Filippo ;
Roberts, F. Sloan ;
Osterwalder, Juerg ;
Liu, Chang ;
Favaro, Marco ;
Crumlin, Ethan J. ;
Ogasawara, Hirohito ;
Friebel, Daniel ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01) :285-290
[7]   Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy [J].
Eilert, Andre ;
Roberts, F. Sloan ;
Friebel, Daniel ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (08) :1466-1470
[8]   A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
ACS CENTRAL SCIENCE, 2016, 2 (03) :169-174
[9]   Grain-Boundary-Dependent CO2 Electroreduction Activity [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (14) :4606-4609
[10]   Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products [J].
Gao, Dunfeng ;
Aran-Ais, Rosa M. ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
NATURE CATALYSIS, 2019, 2 (03) :198-210