Large Area High-Resolution 3D Mapping of Oxia Planum: The Landing Site for the ExoMars Rosalind Franklin Rover

被引:13
作者
Tao, Yu [1 ]
Muller, Jan-Peter [1 ]
Conway, Susan J. [2 ]
Xiong, Siting [3 ,4 ,5 ,6 ]
机构
[1] Univ Coll London, Dept Space & Climate Phys, Mullard Space Sci Lab, Imaging Grp, Holmbury St Mary, Surrey RH5 6NT, England
[2] Univ Nantes, CNRS, UMR 6112, Lab Planetol & Geodynam, F-44300 Nantes, France
[3] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Minist Nat Resources, Key Lab Geoenvironm Monitoring Great Bay Area, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen 518060, Peoples R China
[6] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen 518060, Peoples R China
基金
中国博士后科学基金; 英国科学技术设施理事会;
关键词
mars; 3D mapping; large area mapping; digital terrain model; deep learning; MADNet; HRSC; CTX; HiRISE; Oxia Planum; ExoMars; Rosalind Franklin rover; landing site; planetary mapping; 3D reconstruction; ORBITER LASER ALTIMETER; MARS; SURFACE; IMAGES; CASSIS;
D O I
10.3390/rs13163270
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We demonstrate an end-to-end application of the in-house deep learning-based surface modelling system, called MADNet, to produce three large area 3D mapping products from single images taken from the ESA Mars Express's High Resolution Stereo Camera (HRSC), the NASA Mars Reconnaissance Orbiter's Context Camera (CTX), and the High Resolution Imaging Science Experiment (HiRISE) imaging data over the ExoMars 2022 Rosalind Franklin rover's landing site at Oxia Planum on Mars. MADNet takes a single orbital optical image as input, provides pixelwise height predictions, and uses a separate coarse Digital Terrain Model (DTM) as reference, to produce a DTM product from the given input image. Initially, we demonstrate the resultant 25 m/pixel HRSC DTM mosaic covering an area of 197 km x 182 km, providing fine-scale details to the 50 m/pixel HRSC MC-11 level-5 DTM mosaic. Secondly, we demonstrate the resultant 12 m/pixel CTX MADNet DTM mosaic covering a 114 km x 117 km area, showing much more detail in comparison to photogrammetric DTMs produced using the open source in-house developed CASP-GO system. Finally, we demonstrate the resultant 50 cm/pixel HiRISE MADNet DTM mosaic, produced for the first time, covering a 74.3 km x 86.3 km area of the 3-sigma landing ellipse and partially the ExoMars team's geological characterisation area. The resultant MADNet HiRISE DTM mosaic shows fine-scale details superior to existing Planetary Data System (PDS) HiRISE DTMs and covers a larger area that is considered difficult for existing photogrammetry and photoclinometry pipelines to achieve, especially given the current limitations of stereo HiRISE coverage. All of the resultant DTM mosaics are co-aligned with each other, and ultimately with the Mars Global Surveyor's Mars Orbiter Laser Altimeter (MOLA) DTM, providing high spatial and vertical congruence. In this paper, technical details are presented, issues that arose are discussed, along with a visual evaluation and quantitative assessments of the resultant DTM mosaic products.
引用
收藏
页数:26
相关论文
共 50 条
[41]   Automated Close-Quarter, High-Resolution Inspection and 3D Reconstruction of Unknown Infrastructure [J].
Bartlett, Ben ;
Trslic, Petar ;
Santos, Matheus ;
Manduhu, Manduhu ;
Riordan, James ;
Dooly, Gerard .
OCEANS 2023 - LIMERICK, 2023,
[42]   Creating high-resolution 3D cranial implant geometry using deep learning techniques [J].
Wu, Chieh-Tsai ;
Yang, Yao-Hung ;
Chang, Yau-Zen .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
[43]   High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions [J].
Richter, Tobias ;
Floetenmeyer, Matthias ;
Ferguson, Charles ;
Galea, Janette ;
Goh, Jaclyn ;
Lindsay, Margaret R. ;
Morgan, Garry P. ;
Marsh, Brad J. ;
Parton, Robert G. .
TRAFFIC, 2008, 9 (06) :893-909
[44]   RESDEPTH: A deep residual prior for 3D reconstruction from high-resolution satellite images [J].
Stucker, Corinne ;
Schindler, Konrad .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 183 :560-580
[45]   3D Patch-Based Multi-View Stereo for High-Resolution Imagery [J].
Yao, Shizeng ;
Akbarpour, Hadi Ali ;
Seetharaman, Guna ;
Palaniappan, Kannappan .
GEOSPATIAL INFORMATICS, MOTION IMAGERY, AND NETWORK ANALYTICS VIII, 2018, 10645
[46]   The power spectrum of solar convection flows from high-resolution observations and 3D simulations [J].
Chaouche, L. Yelles ;
Moreno-Insertis, F. ;
Bonet, J. A. .
ASTRONOMY & ASTROPHYSICS, 2014, 563
[47]   Cranial Implant Prediction Using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement [J].
Bayat, Amirhossein ;
Shit, Suprosanna ;
Kilian, Adrian ;
Liechtenstein, Jurgen T. ;
Kirschke, Jan S. ;
Menze, Bjoern H. .
TOWARDS THE AUTOMATIZATION OF CRANIAL IMPLANT DESIGN IN CRANIOPLASTY, AUTOIMPLANT 2020, 2020, 12439 :77-84
[48]   Full-Waveform Terrestrial Laser Scanning for Extracting a High-Resolution 3D Topographic Model: a Case Study on an Area of Archaeological Significance [J].
Di Salvo, Fabio ;
Lo Brutto, Mauro .
EUROPEAN JOURNAL OF REMOTE SENSING, 2014, 47 :307-327
[49]   How to Build and Customize a High-Resolution 3D Laserscanner Using Off-the-shelf Components [J].
Schubert, Stefan ;
Neubert, Peer ;
Protzel, Peter .
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2016, 2016, 9716 :314-326
[50]   High-Resolution 3D Crop Reconstruction and Automatic Analysis of Phenotyping Index Using Machine Learning [J].
Yang, Myongkyoon ;
Cho, Seong-In .
AGRICULTURE-BASEL, 2021, 11 (10)