GLOBAL SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS IN CRITICAL BESOV SPACES

被引:13
作者
Yang, Minghua [1 ]
Fu, Zunwei [2 ,3 ]
Sun, Jinyi [4 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Jiangxi, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276000, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
[4] Northwest Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 08期
基金
中国国家自然科学基金;
关键词
Chemotaxis-Navier-Stokes equation; global solution; Besov space; Littlewood-Paley theory; WELL-POSEDNESS; BLOW-UP; NONLINEAR DIFFUSION; FLUID EQUATIONS; GEVREY REGULARITY; WEAK SOLUTIONS; INITIAL DATA; SYSTEM; EXISTENCE; MODEL;
D O I
10.3934/dcdsb.2018284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the Cauchy problem to chemotaxis model coupled to the incompressible Navier-Stokes equations. Using the Fourier frequency localization and the Bony paraproduct decomposition, we establish the global-in-time existence of the solution when the gravitational potential phi and the small initial data (u(0), n(0,) c(0)) in critical Besov spaces under certain conditions. Moreover, we prove that there exist two positive constants sigma(0) and C-0 such that if the gravitational potential phi is an element of<(B)single over dot>(3/p)(p,1) (R-3) and the initial data (u(0), n(0), c(0)) := (u(0)(1), u(0)(2), u(0)(3), n(0), c(0)) := (u(0)(h), u(0)(3), n(0), c(0)) satisfies (parallel to u(0)(h)parallel to(<(B)single over dot>p, 1-1+3/p(R3)) + parallel to(n(0), c(0))parallel to(<(B)single over dot>q,1-2+3/q(R3) x <(B)single over dot>q, 1 3/q (R3)) ) x exp {C-0 (parallel to u(0)(3)parallel to(<(B)single over dot>p, 1-1+3/p(R3)) + 1)(2)} <= sigma(0) for some p, q with 1 < p, q < 6, 1/p + 1/q > 2/3 and 1/min{p,q} - 1/max{p, q} <= 1/3, then the global existence results can be extended to the global solutions without any small conditions imposed on the third component of the initial velocity field u(0)(3) in critical Besov spaces with the aid of continuity argument. Our initial data class is larger than that of some known results. Our results are completely new even for three-dimensional chemotaxis-Navier-Stokes system.
引用
收藏
页码:3427 / 3460
页数:34
相关论文
共 65 条
[51]   Stabilization in a two-dimensional chemotaxis-Navier-Stokes system [J].
Winkler, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (02) :455-487
[52]   Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system [J].
Winkler, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05) :748-767
[53]   Global Large-Data Solutions in a Chemotaxis-(Navier-)Stokes System Modeling Cellular Swimming in Fluid Drops [J].
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) :319-351
[54]   Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model [J].
Winkler, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (12) :2889-2905
[55]   The Navier-Stokes equations in the weak-Ln space with time-dependent external force [J].
Yamazaki, M .
MATHEMATISCHE ANNALEN, 2000, 317 (04) :635-675
[56]  
Yamazaki Masao., 2000, Funkcial. Ekvac, V43, P419
[57]   Analyticity and Existence of the Keller-Segel-Navier-Stokes Equations in Critical Besov Spaces [J].
Yang, Minghua ;
Fu, Zunwei ;
Liu, Suying .
ADVANCED NONLINEAR STUDIES, 2018, 18 (03) :517-535
[58]   Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces [J].
Yang, MingHua ;
Fu, ZunWei ;
Sun, JinYi .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (10) :1837-1856
[59]   GEVREY REGULARITY AND EXISTENCE OF NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV SPACES [J].
Yang, Minghua ;
Sun, Jinyi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) :1617-1639
[60]   Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity [J].
Zhai, Cuili ;
Zhang, Ting .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (09)