Multi-Modal Segmentation of 3D Brain Scans Using Neural Networks

被引:3
作者
Zopes, Jonathan [1 ]
Platscher, Moritz [1 ]
Paganucci, Silvio [1 ]
Federau, Christian [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Biomed Engn, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
brain imaging (CT and MRI); anatomical segmentation; multi-modal; convolutional neural networks; dropout sampling; AUTOMATIC SEGMENTATION; ATROPHY; IMAGES;
D O I
10.3389/fneur.2021.653375
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Anatomical segmentation of brain scans is highly relevant for diagnostics and neuroradiology research. Conventionally, segmentation is performed on T-1-weighted MRI scans, due to the strong soft-tissue contrast. In this work, we report on a comparative study of automated, learning-based brain segmentation on various other contrasts of MRI and also computed tomography (CT) scans and investigate the anatomical soft-tissue information contained in these imaging modalities. A large database of in total 853 MRI/CT brain scans enables us to train convolutional neural networks (CNNs) for segmentation. We benchmark the CNN performance on four different imaging modalities and 27 anatomical substructures. For each modality we train a separate CNN based on a common architecture. We find average Dice scores of 86.7 +/- 4.1% (T-1-weighted MRI), 81.9 +/- 6.7% (fluid-attenuated inversion recovery MRI), 80.8 +/- 6.6% (diffusion-weighted MRI) and 80.7 +/- 8.2% (CT), respectively. The performance is assessed relative to labels obtained using the widely-adopted FreeSurfer software package. The segmentation pipeline uses dropout sampling to identify corrupted input scans or low-quality segmentations. Full segmentation of 3D volumes with more than 2 million voxels requires < 1s of processing time on a graphical processing unit.
引用
收藏
页数:9
相关论文
共 35 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2016, PROC MACHINE LEARNIN
[3]   The Insight ToolKit image registration framework [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Stauffer, Michael ;
Song, Gang ;
Wu, Baohua ;
Gee, James C. .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[4]   Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning [J].
Cai, Jason C. ;
Akkus, Zeynettin ;
Philbrick, Kenneth A. ;
Boonrod, Arunnit ;
Hoodeshenas, Safa ;
Weston, Alexander D. ;
Rouzrokh, Pouria ;
Conte, Gian Marco ;
Zeinoddini, Atefeh ;
Vogelsang, David C. ;
Huang, Qiao ;
Erickson, Bradley J. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) :1-12
[5]   Segmentation of the brain using direction-averaged signal of DWI images [J].
Cheng, Hu ;
Newman, Sharlene ;
Afzali, Maryam ;
Fadnavis, Shreyas Sanjeev ;
Garyfallidis, Eleftherios .
MAGNETIC RESONANCE IMAGING, 2020, 69 :1-7
[6]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[7]   Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning [J].
Ciritsis, Alexander ;
Boss, Andreas ;
Rossi, Cristina .
NMR IN BIOMEDICINE, 2018, 31 (07)
[8]   AssemblyNet: A Novel Deep Decision-Making Process for Whole Brain MRI Segmentation [J].
Coupe, Pierrick ;
Mansencal, Boris ;
Clement, Michael ;
Giraud, Remi ;
de Senneville, Baudouin Denis ;
Vinh-Thong Ta ;
Lepetit, Vincent ;
Manjon, Jose V. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :466-474
[9]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[10]   Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging [J].
Duong, M. T. ;
Rudie, J. D. ;
Wang, J. ;
Xie, L. ;
Mohan, S. ;
Gee, J. C. ;
Rauschecker, A. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (08) :1282-1290