Spin Hall effect by surface roughness

被引:39
|
作者
Zhou, Lingjun [1 ,2 ]
Grigoryan, Vahram L. [1 ,2 ]
Maekawa, Sadamichi [3 ,4 ]
Wang, Xuhui [5 ]
Xiao, Jiang [1 ,2 ,6 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[5] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[6] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
基金
中国国家自然科学基金;
关键词
ROOM-TEMPERATURE; SEMICONDUCTORS; TRANSPORT;
D O I
10.1103/PhysRevB.91.045407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Observation of inverse spin Hall effect in bismuth selenide
    Deorani, Praveen
    Son, Jaesung
    Banerjee, Karan
    Koirala, Nikesh
    Brahlek, Matthew
    Oh, Seongshik
    Yang, Hyunsoo
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [42] Large spin Hall effect in Si at room temperature
    Lou, Paul C.
    Katailiha, Anand
    Bhardwaj, Ravindra G.
    Bhowmick, Tonmoy
    Beyermann, W. P.
    Lake, Roger K.
    Kumar, Sandeep
    PHYSICAL REVIEW B, 2020, 101 (09)
  • [43] Topological Phase Transitions in the Photonic Spin Hall Effect
    Kort-Kamp, W. J. M.
    PHYSICAL REVIEW LETTERS, 2017, 119 (14)
  • [44] Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect
    Nakayama, H.
    Althammer, M.
    Chen, Y. -T.
    Uchida, K.
    Kajiwara, Y.
    Kikuchi, D.
    Ohtani, T.
    Gepraegs, S.
    Opel, M.
    Takahashi, S.
    Gross, R.
    Bauer, G. E. W.
    Goennenwein, S. T. B.
    Saitoh, E.
    PHYSICAL REVIEW LETTERS, 2013, 110 (20)
  • [45] Graphene electrodynamics in the presence of the extrinsic spin Hall effect
    Huang, Chunli
    Chong, Y. D.
    Vignale, Giovanni
    Cazalilla, Miguel A.
    PHYSICAL REVIEW B, 2016, 93 (16)
  • [46] Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting
    Zhou, Xinxing
    Ling, Xiaohui
    OPTICS EXPRESS, 2016, 24 (03): : 3025 - 3036
  • [47] Inverse spin-Hall effect induced by spin pumping in metallic system
    Ando, K.
    Takahashi, S.
    Ieda, J.
    Kajiwara, Y.
    Nakayama, H.
    Yoshino, T.
    Harii, K.
    Fujikawa, Y.
    Matsuo, M.
    Maekawa, S.
    Saitoh, E.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
  • [48] Colossal spin Hall effect in ultrathin metallic films
    Herschbach, Christian
    Fedorov, Dmitry V.
    Gradhand, Martin
    Mertig, Ingrid
    PHYSICAL REVIEW B, 2014, 90 (18):
  • [49] Spin Hall effect from bipolaron dynamics in organics
    Miao, Yuanyuan
    Li, Dan
    Zhang, Huiqing
    Ren, Junfeng
    Hu, Guichao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (11) : 7763 - 7771
  • [50] Spin Hall effect in a superconductor/normal metal junction
    Hikino, S.
    Yunoki, S.
    ADVANCES IN SUPERCONDUCTIVITY XXIV, 2012, 27 : 84 - 87