Spin Hall effect by surface roughness

被引:39
|
作者
Zhou, Lingjun [1 ,2 ]
Grigoryan, Vahram L. [1 ,2 ]
Maekawa, Sadamichi [3 ,4 ]
Wang, Xuhui [5 ]
Xiao, Jiang [1 ,2 ,6 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[5] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[6] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
基金
中国国家自然科学基金;
关键词
ROOM-TEMPERATURE; SEMICONDUCTORS; TRANSPORT;
D O I
10.1103/PhysRevB.91.045407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Spin Hall effect in noncollinear kagome antiferromagnets
    Busch, Oliver
    Goebel, Boerge
    Mertig, Ingrid
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [32] Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
    Savero Torres, W.
    Sierra, J. F.
    Benitez, L. A.
    Bonell, F.
    Costache, M. V.
    Valenzuela, S. O.
    2D MATERIALS, 2017, 4 (04):
  • [33] Distinguishing the inverse spin Hall effect photocurrent of electrons and holes by comparing to the classical Hall effect
    Zhang, Yang
    Liu, Yu
    Zeng, Xiao Lin
    Wu, Jing
    Yu, Jin Ling
    Chen, Yong Hai
    OPTICS EXPRESS, 2020, 28 (06): : 8331 - 8340
  • [34] Spin pumping and spin-Hall effect observed in metallic films
    Kajiwara, Y.
    Ando, K.
    Sasage, K.
    Saitoh, E.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [35] Quantum kinetic equation for spin relaxation and spin Hall effect in GaAs
    Lee, H. C.
    Mou, C. -Y.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 73 (02) : 229 - 242
  • [36] Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect
    Jiao, HuJun
    Bauer, Gerrit E. W.
    PHYSICAL REVIEW LETTERS, 2013, 110 (21)
  • [37] Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect
    Seki, Takeshi
    Uchida, Ken-ichi
    Kikkawa, Takashi
    Qiu, Zhiyong
    Saitoh, Eiji
    Takanashi, Koki
    APPLIED PHYSICS LETTERS, 2015, 107 (09)
  • [38] Influence of Fe Impurity on Spin Hall Effect in Au
    Sugai, Isamu
    Mitani, Seiji
    Takanashi, Koki
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (07) : 2559 - 2561
  • [39] Discrete quantum geometry and intrinsic spin Hall effect
    Yu, Jie-Xiang
    Zang, Jiadong
    Lake, Roger K.
    Zhang, Yi
    Yin, Gen
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [40] Extrinsic Spin Hall Effect from First Principles
    Gradhand, Martin
    Fedorov, Dmitry V.
    Zahn, Peter
    Mertig, Ingrid
    PHYSICAL REVIEW LETTERS, 2010, 104 (18)