Fabrication of Lipid Tubules with Embedded Quantum Dots by Membrane Tubulation Protein

被引:13
|
作者
Tanaka, Masayoshi [1 ,2 ]
Critchley, Kevin [1 ]
Matsunaga, Tadashi [2 ]
Evans, Stephen D. [1 ]
Staniland, Sarah S. [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[2] Tokyo Univ Agr & Technol, Dept Biotechnol, Koganei, Tokyo 1848588, Japan
基金
英国工程与自然科学研究理事会;
关键词
biocompatible materials; encapsulation; lipid tubules; nanoparticles; quantum dots; BAR; CURVATURE; NANOPARTICLES; INVAGINATION; NONINJECTION; AMPHIPHYSIN; NANOTUBES; VESICLES; DYNAMIN; SIZE;
D O I
10.1002/smll.201102446
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The first one-dimensional (1D) assembly of low-toxicity CuInS2/ZnS quantum dots (QDs) embedded in lipid nanotubules, formed from liposomes using the Amphiphysin-BAR (Bin-Amphiphysin-Rvs domain of human amphiphysin) protein to elongate the structure, is reported. The QD-containing lipid nanotubules display a high aspect ratio of approximate to 500:1 (approximate to 40 nm diameter and 20 mu m length) and are stable for more than 20 h. Furthermore, this methodology is extended to the assembly of various nanoparticle species within 1D lipid nanotubules, and includes materials such as CdSe and Au. Encapsulation within the hydrophobic core of the bilayer makes these materials highly biocompatible. The developed methodology and materials with these unique characteristics could be useful for various applications in nanobiotechnology and nanomedicine.
引用
收藏
页码:1590 / 1595
页数:6
相关论文
共 50 条
  • [31] Fabrication and characterization of PbS quantum dots
    Cademartiri, L
    von Freymann, G
    Kitaev, V
    Ozin, GA
    Physics of Semiconductors, Pts A and B, 2005, 772 : 597 - 598
  • [32] Fabrication of graphene oxide quantum dots (GOQDs) and graphene quantum dots (GQDs)
    Fan, Tianju
    Zeng, Wenjing
    Zhang, Dianbo
    Yuan, Chunqiu
    Tang, Wei
    Tong, Songzhao
    Mo, Shenbin
    Zhao, Chunyan
    Liu, Yidong
    Min, Yong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [33] The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions
    Newport, Thomas D.
    Sansom, Mark S. P.
    Stansfeld, Phillip J.
    NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D390 - D397
  • [34] Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots
    Dundar, Mehmet A.
    Bordas, Frederic
    Eijkemans, Tom J.
    Chauvin, Nicolas
    Silov, Andrei Yu
    Notzel, Richard
    Karouta, Fouad
    Fiore, Andrea
    van der Heijden, Rob W.
    JOURNAL OF NANOPHOTONICS, 2009, 3
  • [35] Fabrication of a fluorescent sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted organogel nanofibers
    Kim, Youngdo
    Chang, Ji Young
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 234 : 122 - 129
  • [36] EMBEDDED SEMICONDUCTOR QUANTUM DOTS - CURRENT OVERVIEW
    Hulicius, Eduard
    Hospodkova, Alice
    Zikova, Marketa
    12TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2020), 2021, : 133 - 138
  • [37] Photoluminescence of PbS quantum dots embedded in glasses
    Liu, Chao
    Heo, Jong
    Zhang, Xianghua
    Adam, Jean-Luc
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (2-9) : 618 - 623
  • [38] Raman analysis of embedded monolayers and quantum dots
    Geurts, J
    Wagner, V
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (13): : 2644 - 2649
  • [39] High resolution analysis of embedded quantum dots
    Harvey, AJ
    Davock, HJ
    Goodhew, PJ
    SELF-ORGANIZED PROCESSES IN SEMICONDUCTOR ALLOYS, 2000, 583 : 3 - 8
  • [40] Quantum computation with coupled quantum dots embedded in optical microcavities
    Li, XQ
    Yan, YJ
    PHYSICAL REVIEW B, 2002, 65 (20) : 1 - 5