An Efficient Linear Detection Scheme Based on L-BFGS Method for Massive MIMO Systems

被引:14
作者
Li, Lin [1 ]
Hu, Jianhao [1 ]
机构
[1] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Peoples R China
关键词
Massive MIMO; Optimization; Iterative methods; Covariance matrices; Symmetric matrices; Matrix converters; Computational modeling; MMSE detection; quasi-Newton method; L-BFGS;
D O I
10.1109/LCOMM.2021.3121445
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
For massive multiple-input multiple-output (MIMO) systems, minimum mean square error (MMSE) detection is near-optimal, but requires high-complexity matrix inversion. To avoid matrix inversion, we formulate MMSE detection as a strictly convex quadratic optimization problem, which can be solved iteratively by the recognized most efficient Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. According to special properties of massive MIMO systems, we propose a novel limited-memory BFGS (L-BFGS) scheme for MMSE detection with one correction search, unit step length, and simplified initialization, which can greatly reduce the storage and computation cost compared to BFGS method. Simulation results finally verify the effectiveness of the proposed scheme.
引用
收藏
页码:138 / 142
页数:5
相关论文
共 14 条
[1]   Low Complexity Linear Detectors for Massive MIMO: A Comparative Study [J].
Albreem, Mahmoud A. ;
Salah, Wael ;
Kumar, Arun ;
Alsharif, Mohammed H. ;
Rambe, Ali Hanafiah ;
Jusoh, Muzammil ;
Uwaechia, Anthony Ngozichukwuka .
IEEE ACCESS, 2021, 9 :45740-45753
[2]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[3]   Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function [J].
Ek, David ;
Forsgren, Anders .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (03) :789-816
[4]   Fast matrix inversion methods based on Chebyshev and Newton iterations for zero forcing precoding in massive MIMO systems [J].
Hashima, Sherief ;
Muta, Osamu .
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
[5]   ON THE LIMITED MEMORY BFGS METHOD FOR LARGE-SCALE OPTIMIZATION [J].
LIU, DC ;
NOCEDAL, J .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :503-528
[6]   Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas [J].
Marzetta, Thomas L. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2010, 9 (11) :3590-3600
[7]   Fast Converging Weighted Neumann Series Precoding for Massive MIMO Systems [J].
Nagy, Betty ;
Elsabrouty, Maha ;
Elramly, Salwa .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (02) :154-157
[8]  
NOCEDAL J, 1980, MATH COMPUT, V35, P773, DOI 10.1090/S0025-5718-1980-0572855-7
[9]  
Nocedal J., 1999, Numerical Optimization
[10]   Scaling Up MIMO [J].
Rusek, Fredrik ;
Persson, Daniel ;
Lau, Buon Kiong ;
Larsson, Erik G. ;
Marzetta, Thomas L. ;
Edfors, Ove ;
Tufvesson, Fredrik .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (01) :40-60