Hydrolytic (In)stability of Methacrylate Esters in Covalently Cross-Linked Hydrogels Based on Chondroitin Sulfate and Hyaluronic Acid Methacrylate

被引:17
作者
Schuurmans, Carl C. L. [1 ,2 ]
Brouwer, Arwin J. [3 ]
Jong, Jacobus A. W. [1 ]
Boons, Geert-Jan P. H. [3 ,4 ]
Hennink, Wim E. [1 ]
Vermonden, Tina [1 ]
机构
[1] Univ Utrecht, Utrecht Inst Pharmaceut Sci UIPS, Div Pharmaceut, NL-3508 TB Utrecht, Netherlands
[2] Univ Utrecht, Utrecht Inst Pharmaceut Sci UIPS, Div Pharmacol, NL-3508 TB Utrecht, Netherlands
[3] Univ Utrecht, Utrecht Inst Pharmaceut Sci UIPS, Div Chem Biol & Drug Discovery, NL-3508 TB Utrecht, Netherlands
[4] Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA
关键词
GLYCIDYL METHACRYLATE; DEGRADATION; POLYMERIZATION; MECHANISM; KINETICS; BEHAVIOR; SCAFFOLD; RELEASE; DESIGN;
D O I
10.1021/acsomega.1c03395
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chondroitin sulfate (CS) and hyaluronic acid (HA) methacrylate ( MA) hydrogels are under investigation for biomedical applications. Here, the hydrolytic (in)stability of the MA esters in these polysaccharides and hydrogels is investigated. Hydrogels made with glycidyl methacrylate-derivatized CS (CSGMA) or methacrylic anhydride (CSMA) degraded after 2-25 days in a cross-linking density-dependent manner (pH 7.4, 37 degrees C). HA methacrylate (HAMA) hydrogels were stable over 50 days under the same conditions. CS(G)MA hydrogel degradation rates increased with pH, due to hydroxide-driven ester hydrolysis. Desulfated chondroitin MA hydrogels also degrade, indicating that sulfate groups are not responsible for CS(G)MA's hydrolytic sensitivity (pH 7.0-8.0, 37 degrees C). This sensitivity is likely because CS(G)MA's N-acetyl-galactosamines do not form hydrogen bonds with adjacent glucuronic acid oxygens, whereas HAMA's N-acetyl-glucosamines do. This bond absence allows CS(G)MA higher chain flexibility and hydration and could increase ester hydrolysis sensitivity in CS(G)MA networks. This report helps in biodegradable hydrogel development based on endogenous polysaccharides for clinical applications.
引用
收藏
页码:26302 / 26310
页数:9
相关论文
共 41 条
[1]   A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications [J].
Abbadessa, A. ;
Blokzijl, M. M. ;
Mouser, V. H. M. ;
Marica, P. ;
Malda, J. ;
Hennink, W. E. ;
Vermonden, T. .
CARBOHYDRATE POLYMERS, 2016, 149 :163-174
[2]   A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides [J].
Abbadessa, Anna ;
Mouser, Vivian H. M. ;
Blokzijl, Maarten M. ;
Gawlitta, Debby ;
Dhert, Wouter J. A. ;
Hennink, Wim E. ;
Malda, Jos ;
Vermonden, Tina .
BIOMACROMOLECULES, 2016, 17 (06) :2137-2147
[3]   Fourier-transformed infrared spectroscopy, physicochemical and biochemical properties of chondroitin sulfate and glucosamine as supporting information on quality control of raw materials [J].
Alberto-Silva, Carlos ;
Malheiros, Fernanda Blini Marengo ;
Querobino, Samyr Machado .
FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 6 (01)
[4]   Influence of the degree of methacrylation on hyaluronic acid hydrogels properties [J].
Bencherif, Sidi A. ;
Srinivasan, Abiraman ;
Horkay, Ferenc ;
Hollinger, Jeffrey O. ;
Matyjaszewski, Krzysztof ;
Washburn, Newell R. .
BIOMATERIALS, 2008, 29 (12) :1739-1749
[5]   Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury [J].
Betancur, Martha I. ;
Mason, Hannah D. ;
Alvarado-Velez, Melissa ;
Holmes, Phillip V. ;
Bellamkonda, Ravi V. ;
Karumbaiah, Lohitash .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (03) :420-430
[6]   Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior [J].
Brandl, Ferdinand ;
Sommer, Florian ;
Goepferich, Achim .
BIOMATERIALS, 2007, 28 (02) :134-146
[7]   Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks [J].
Burdick, JA ;
Chung, C ;
Jia, XQ ;
Randolph, MA ;
Langer, R .
BIOMACROMOLECULES, 2005, 6 (01) :386-391
[8]   Hyaluronic Acid Hydrogels for Biomedical Applications [J].
Burdick, Jason A. ;
Prestwich, Glenn D. .
ADVANCED MATERIALS, 2011, 23 (12) :H41-H56
[9]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[10]  
Esko J.D., 2009, Proteoglycans and Sulfated Glycosaminoglycans