String-charge duality in integrable lattice models

被引:106
作者
Ilievski, Enej [1 ]
Quinn, Eoin [1 ]
De Nardis, Jacopo [2 ]
Brockmann, Michael [3 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys, Sci Pk 904,Postbus 94485, NL-1090 GL Amsterdam, Netherlands
[2] Ecole Normale Super, Lab Phys Theor, Paris, France
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2016年
关键词
algebraic structures of integrable models; quantum integrability (Bethe Ansatz); quantum quenches; symmetries of integrable models; LOCAL CONSERVATION-LAWS; CONFORMAL FIELD-THEORY; MANY-BODY SYSTEM; FINITE-TEMPERATURE; HEISENBERG-MODEL; XXZ CHAIN; FUNCTIONAL RELATIONS; QUANTUM-SYSTEMS; Q-OPERATOR; SPIN-1/2;
D O I
10.1088/1742-5468/2016/06/063101
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present an identification of the spectra of local conserved operators of integrable quantum lattice models and the density distributions of their thermodynamic particle content. This is derived explicitly for the Heisenberg XXZ spin chain. As an application we discuss a quantum quench scenario, in both the gapped and critical regimes. We outline an exact technique which allows for an efficient implementation on periodic matrix product states. In addition, for certain simple product states we obtain closed-form expressions for the density distributions in terms of solutions to Hirota difference equations. Remarkably, no reference to a maximal entropy principle is invoked.
引用
收藏
页数:32
相关论文
共 71 条
[1]  
[Anonymous], 2015, J PHYS A-MATH THEOR
[2]  
[Anonymous], ARXIV150307538
[3]   The quantum deformed mirror TBA II [J].
Arutyunov, Gleb ;
de Leeuw, Marius ;
van Tongeren, Stijn J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02)
[4]   The quantum deformed mirror TBA I [J].
Arutyunov, Gleb ;
de Leeuw, Marius ;
van Tongeren, Stijn J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10)
[5]   8-VERTEX MODEL IN LATTICE STATISTICS AND ONE-DIMENSIONAL ANISOTROPIC HEISENBERG CHAIN .1. SOME FUNDAMENTAL EIGENVECTORS [J].
BAXTER, R .
ANNALS OF PHYSICS, 1973, 76 (01) :1-24
[6]   A shortcut to the Q-operator [J].
Bazhanov, Vladimir V. ;
Lukowski, Tomasz ;
Meneghelli, Carlo ;
Staudacher, Matthias .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[7]   Integrable structure of conformal field theory - II. Q-operator and DDV equation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) :247-278
[8]   RESTRICTED SOLID-ON-SOLID MODELS CONNECTED WITH SIMPLY LACED ALGEBRAS AND CONFORMAL FIELD-THEORY [J].
BAZHANOV, VV ;
RESHETIKHIN, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :1477-1492
[9]  
Benz J, 2005, J PHYS SOC JPN, V74
[10]   Quantum quench in the sine-Gordon model [J].
Bertini, Bruno ;
Schuricht, Dirk ;
Essler, Fabian H. L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,