Impaired autophagy: The collateral damage of lysosomal storage disorders

被引:44
|
作者
Myerowitz, Rachel [1 ]
Puertollano, Rosa [2 ]
Raben, Nina [2 ]
机构
[1] St Marys Coll Maryland, Dept Biol, St Marys City, MD 20686 USA
[2] NHLBI, Cell & Dev Biol Ctr, NIH, 50 South Dr Room 3533, Bethesda, MD 20892 USA
来源
EBIOMEDICINE | 2021年 / 63卷
基金
美国国家卫生研究院;
关键词
Lysosome; Autophagy; Gaucher disease; Batten disease; Danon disease; Pompe disease; Cystinosis; ENZYME REPLACEMENT THERAPY; MOUSE MODEL; DISEASE; DEGRADATION; PROTEIN; BIOGENESIS; CYSTINOSIS; MUTATIONS; LAMP-2; TFEB;
D O I
10.1016/j.ebiom.2020.103166
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Lysosomal storage disorders (LSDs), which number over fifty, are monogenically inherited and caused by mutations in genes encoding proteins that are involved in lysosomal function. Lack of the functional protein results in storage of a distinctive material within the lysosomes, which for years was thought to determine the pathophysiology of the disorder. However, our current view posits that the primary storage material disrupts the normal role of the lysosome in the autophagic pathway resulting in the secondary storage of autophagic debris. It is this "collateral damage" which is common to the LSDs but nonetheless intricately nuanced in each. We have selected five LSDs resulting from defective proteins that govern widely different lysosomal functions including glycogen degradation (Pompe), lysosomal transport (Cystinosis), lysosomal trafficking (Danon), glycolipid degradation (Gaucher) and an unidentified function (Batten) and argue that despite the disparate functions, these proteins, when mutant, all impair the autophagic process uniquely. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A
    Gabande-Rodriguez, E.
    Boya, P.
    Labrador, V.
    Dotti, C. G.
    Ledesma, M. D.
    CELL DEATH AND DIFFERENTIATION, 2014, 21 (06) : 864 - 875
  • [32] Biomedical Implications of Autophagy in Macromolecule Storage Disorders
    Palhegyi, Adina Maria
    Seranova, Elena
    Dimova, Simona
    Hoque, Sheabul
    Sarkar, Sovan
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
  • [33] Newborn screening for lysosomal storage disorders
    Meikle, Peter J.
    Grasby, Dallas J.
    Dean, Caroline J.
    Lang, Debbie L.
    Bockmann, Michelle
    Whittle, Alison M.
    Fietz, Michael J.
    Simonsen, Henrik
    Fuller, Maria
    Brooks, Douglas A.
    Hopwood, John J.
    MOLECULAR GENETICS AND METABOLISM, 2006, 88 (04) : 307 - 314
  • [34] Lysosomal storage disorders: Present and future
    Phadke, Shubha R.
    INDIAN PEDIATRICS, 2015, 52 (12) : 1025 - 1026
  • [35] Aberrant autophagy in lysosomal storage disorders marked by a lysosomal SNARE protein shortage due to suppression of endocytosis
    Tanaka, Hiroki
    Tsuji, Daisuke
    Watanabe, Ryosuke
    Ohnishi, Yukiya
    Kitaguchi, Shindai
    Nakae, Ryuto
    Teramoto, Hiromi
    Tsukimoto, Jun
    Horii, Yuto
    Itoh, Kohji
    JOURNAL OF INHERITED METABOLIC DISEASE, 2022, 45 (06) : 1191 - 1202
  • [36] Musculoskeletal manifestations of lysosomal storage disorders
    Aldenhoven, M.
    Sakkers, R. J. B.
    Boelens, J.
    de Koning, T. J.
    Wulffraat, N. M.
    ANNALS OF THE RHEUMATIC DISEASES, 2009, 68 (11) : 1659 - 1665
  • [37] Lysosomal storage disorders
    Vellodi, A
    BRITISH JOURNAL OF HAEMATOLOGY, 2005, 128 (04) : 413 - 431
  • [38] Treatment strategies for lysosomal storage disorders
    Beck, Michael
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2018, 60 (01) : 13 - 18
  • [39] Lysosomal Storage Disorders
    Stulnig, T.
    AUSTRIAN JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, 2011, 4 (02): : 22 - 26
  • [40] Pathophysiology of neuropathic lysosomal storage disorders
    Bellettato, Cinzia Maria
    Scarpa, Maurizio
    JOURNAL OF INHERITED METABOLIC DISEASE, 2010, 33 (04) : 347 - 362