Pulsed electrochemical synthesis of formate using Pb electrodes

被引:30
作者
Blom, Martijn J. W. [1 ,2 ]
Smulders, Vera [1 ]
van Swaaij, Wim P. M. [2 ]
Kersten, Sascha R. A. [2 ]
Mul, Guido [1 ]
机构
[1] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, PhotoCatalyt Synth Grp, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Fac Sci & Technol, Sustainable Proc Technol Grp, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Pulsed electrochemistry; Electrochemical CO2 reduction; Formate; Deactivation; Periodic anodic polarization; CARBON-DIOXIDE; METAL-ELECTRODES; LEAD ELECTRODE; CO2; REDUCTION; FUEL-CELLS; ELECTROREDUCTION; SPECTROSCOPY; SELECTIVITY; CATALYSTS;
D O I
10.1016/j.apcatb.2019.118420
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead cathodes show decreasing Faradaic Efficiency (FE) in electrochemical conversion of CO2 to formate, favoring hydrogen, within minutes of operation in KHCO3 electrolyte at -1 to -1.3 V vs RHE. Periodic anodic polarization (pulsed electrochemistry) is demonstrated to result in a high time-averaged FE towards formate. Specifically, an anodic polarization time of 0.1-1 s is sufficient to obtain a Pb-surface providing an averaged formate FE of 30-50%, when the cathodic polarization time is limited to a few seconds. A Pourbaix diagram and Raman spectra are provided, which show that PbCO3 is formed on the surface of the cathode in KHCO3 electrolyte at anodic potential (0.05 V vs RHE), which compound is likely inducing the high FE towards formate. Our method thus provides a means to operate Pb electrodes in electrochemical CO2 reduction with high stability, at a low energy penalty.
引用
收藏
页数:7
相关论文
共 28 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[2]   Direct formate fuel cells: A review [J].
An, L. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2016, 320 :127-139
[3]  
[Anonymous], [No title captured]
[4]   ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE ON VARIOUS METAL-ELECTRODES IN LOW-TEMPERATURE AQUEOUS KHCO3 MEDIA [J].
AZUMA, M ;
HASHIMOTO, K ;
HIRAMOTO, M ;
WATANABE, M ;
SAKATA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (06) :1772-1778
[5]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[6]   Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products [J].
Burgio, L ;
Clark, RJH ;
Firth, S .
ANALYST, 2001, 126 (02) :222-227
[7]   Best Practices in Pursuit of Topics in Heterogeneous Electrocatalysis [J].
Chen, Jingguang G. ;
Jones, Christopher W. ;
Linic, Suljo ;
Stamenkovic, Vojislav R. .
ACS CATALYSIS, 2017, 7 (09) :6392-6393
[8]   CO2 electroreduction to formate: Continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes [J].
Diaz-Sainz, G. ;
Alvarez-Guerra, M. ;
Solla-Gullon, J. ;
Garcia-Cruz, L. ;
Montiel, V. ;
Irabien, A. .
JOURNAL OF CO2 UTILIZATION, 2019, 34 :12-19
[9]   Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid [J].
Du, Dongwei ;
Lan, Rong ;
Humphreys, John ;
Tao, Shanwen .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (06) :661-678
[10]   Direct Formic Acid Fuel Cells with 600 mA cm-2 at 0.4 V and 22 °C [J].
Ha, S. ;
Larssen, R. ;
Zhu, Y. ;
Masel, R. I. .
FUEL CELLS, 2004, 4 (04) :337-343