Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions

被引:59
作者
Camenisch, Gian [1 ]
Umehara, Ken-ichi [1 ]
机构
[1] Novartis Inst Biomed Res, Drug Drug Interact Sect DDI, Drug Metab & Pharmacokinet DMPK, CH-4002 Basel, Switzerland
关键词
clearance prediction; drug-drug interactions; metabolism; transporter; compound classification; INTESTINAL 1ST-PASS METABOLISM; CLINICAL PHARMACOKINETICS; VIVO EXTRAPOLATION; ORGAN CLEARANCE; DISPOSITION; KETOCONAZOLE; ATORVASTATIN; MODELS; LIVER; BIOTRANSFORMATION;
D O I
10.1002/bdd.1784
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Objectives Membrane transporters and metabolism are major determinants of the hepatobiliary elimination of drugs. This work investigates several key questions for drug development. Such questions include which drugs demonstrate transporter-based clearance in the clinic, and which in vitro methods are most suitable for drug classification, i.e. transporter- vs metabolism-dependent compound class categories. Additional questions posed are: what is the expected quantitative change in exposure in the presence of a transporter- and/or metabolism-inhibiting drug, and which criteria should trigger follow-up clinical drugdrug interaction studies. Methods A well-established method for (human) liver clearance prediction that considers all four physiological processes driving hepatic drug elimination (namely sinusoidal uptake and efflux, metabolism and biliary secretion) was applied. Suspended hepatocytes, liver microsomes and sandwich-cultured hepatocytes were used as in vitro models to determine the individual intrinsic clearance for 13 selected compounds with various physicochemical and pharmacokinetic properties. Results Using this in vitroin vivo extrapolation method a good linear correlation was observed between predicted and reported human hepatic clearances. Linear regression analysis revealed much improved correlations compared with other prediction methods. Conclusions The presented approach serves as a basis for accurate compound categorization within the Biopharmaceutics Drug Disposition Classification System (BDDCS) and was applied to anticipate metabolism- and transporter-based drugdrug interactions using different static prediction methods. A decision tree proposal is provided and helps to guide clinical studies on active processes influencing hepatic elimination. All recommendations in this paper are generally intended to support early pre-clinical and clinical drug development and the filing of a new drug application. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:179 / 194
页数:16
相关论文
共 47 条
[11]  
EVERETT DW, 1991, DRUG METAB DISPOS, V19, P740
[12]   Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants [J].
Foradori, A ;
Mezzano, S ;
Videla, C ;
Pefaur, J ;
Elberg, A .
TRANSPLANTATION PROCEEDINGS, 1998, 30 (05) :1685-1687
[13]   Prediction of Human Intestinal First-Pass Metabolism of 25 CYP3A Substrates from In Vitro Clearance and Permeability Data [J].
Gertz, Michael ;
Harrison, Anthony ;
Houston, J. Brian ;
Galetin, Aleksandra .
DRUG METABOLISM AND DISPOSITION, 2010, 38 (07) :1147-1158
[14]   Membrane transporters in drug development [J].
Giacomini, Kathleen M. ;
Huang, Shiew-Mei ;
Tweedie, Donald J. ;
Benet, Leslie Z. ;
Brouwer, Kim L. R. ;
Chu, Xiaoyan ;
Dahlin, Amber ;
Evers, Raymond ;
Fischer, Volker ;
Hillgren, Kathleen M. ;
Hoffmaster, Keith A. ;
Ishikawa, Toshihisa ;
Keppler, Dietrich ;
Kim, Richard B. ;
Lee, Caroline A. ;
Niemi, Mikko ;
Polli, Joseph W. ;
Sugiyama, Yuicchi ;
Swaan, Peter W. ;
Ware, Joseph A. ;
Wright, Stephen H. ;
Yee, Sook Wah ;
Zamek-Gliszczynski, Maciej J. ;
Zhang, Lei .
NATURE REVIEWS DRUG DISCOVERY, 2010, 9 (03) :215-236
[15]   Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism [J].
He, Yi-Jing ;
Zhang, Wei ;
Chen, Yao ;
Guo, Dong ;
Tu, Jiang-Hua ;
Xu, Lin-Yong ;
Tan, Zhi-Rong ;
Chen, Bi-Lian ;
Li, Zhi ;
Zhou, Gan ;
Yu, Bang-Ning ;
Kirchheiner, Julia ;
Zhou, Hong-Hao .
CLINICA CHIMICA ACTA, 2009, 405 (1-2) :49-52
[16]   PHARMACOKINETICS AND DOSE PROPORTIONALITY OF KETOCONAZOLE IN NORMAL VOLUNTEERS [J].
HUANG, YC ;
COLAIZZI, JL ;
BIERMAN, RH ;
WOESTENBORGHS, R ;
HEYKANTS, J .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1986, 30 (02) :206-210
[17]  
Ito K, 1998, PHARMACOL REV, V50, P387
[18]   Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes [J].
Ito, K ;
Houston, JB .
PHARMACEUTICAL RESEARCH, 2004, 21 (05) :785-792
[19]   Quantitative Prediction of Intestinal Metabolism in Humans from a Simplified Intestinal Availability Model and Empirical Scaling Factor [J].
Kadono, Keitaro ;
Akabane, Takafumi ;
Tabata, Kenji ;
Gato, Katsuhiko ;
Terashita, Shigeyuki ;
Teramura, Toshio .
DRUG METABOLISM AND DISPOSITION, 2010, 38 (07) :1230-1237
[20]   In vitro-in vivo Extrapolation of Transporter-mediated Clearance in the Liver and Kidney [J].
Kusuhara, Hiroyuki ;
Sugiyama, Yuichi .
DRUG METABOLISM AND PHARMACOKINETICS, 2009, 24 (01) :37-52