Influence of Li-N and Li-F co-doping on defect-induced intrinsic ferromagnetic and photoluminescence properties of arrays of ZnO nanowires

被引:20
作者
Ghosh, Shyamsundar [1 ]
Khan, Gobinda Gopal [1 ]
Varma, Shikha [2 ]
Mandal, Kalyan [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Dept Condensed Matter Phys & Mat Sci, Kolkata 700098, India
[2] Inst Phys, Bhubaneswar 751005, Orissa, India
关键词
DOPED ZNO; THIN-FILMS; OXIDE; ORIGIN; SEMICONDUCTORS; 1ST-PRINCIPLES; XPS;
D O I
10.1063/1.4747929
中图分类号
O59 [应用物理学];
学科分类号
摘要
The role of N/F co-doping on the defect-driven room-temperature d(0) ferromagnetism in group-I element Li doped ZnO nanowire arrays has been investigated. The ferromagnetic signature of pristine ZnO nanowires has enhanced significantly after Li doping but the Li-N co-doping has found to be more effective in the stabilization and enhancement in room-temperature ferromagnetism in ZnO nanowires. Saturation magnetization in Li-doped ZnO nanowires found to increase from 0.63 to 2.52 emu/g and the Curie temperature rises up to 648 K when 10 at. % N is co-doped with 6 at. % Li. On the other hand, Li-F co-doping leads to exhibit much poor room-temperature ferromagnetic as well as visible luminescence properties. The valance state of the different dopants is estimated by x-ray photoelectron spectroscopy while the photoluminescence spectra indicate the gradual stabilization of Zn vacancy defects or defect complexes in presence of No acceptor states, which is found to be responsible for the enhancement of intrinsic ferromagnetism in ZnO:Li matrix. Therefore, the Li-N co-doping can be an effective parameter to stabilize, enhance, and tune zinc vacancy-induced room-temperature d(0) ferromagnetism in ZnO nanowires, which can be an exciting approach to prepare new class of spintronic materials. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747929]
引用
收藏
页数:9
相关论文
共 52 条
[1]   Identification of oxygen and zinc vacancy optical signals in ZnO [J].
Borseth, T. Moe ;
Svensson, B. G. ;
Kuznetsov, A. Yu. ;
Klason, P. ;
Zhao, Q. X. ;
Willander, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (26)
[2]   Low resistivity p-ZnO films fabricated by sol-gel spin coating [J].
Cao, Yongge ;
Miao, Lei ;
Tanemura, Sakae ;
Tanemura, Masaki ;
Kuno, Yohei ;
Hayashi, Yasuhiko .
APPLIED PHYSICS LETTERS, 2006, 88 (25)
[3]   Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods [J].
Chawla, Santa ;
Jayanthi, K. ;
Kotnala, R. K. .
PHYSICAL REVIEW B, 2009, 79 (12)
[4]   Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F ;
Cibert, J ;
Ferrand, D .
SCIENCE, 2000, 287 (5455) :1019-1022
[5]   Systematic XPS studies of metal oxides, hydroxides and peroxides [J].
Dupin, JC ;
Gonbeau, D ;
Vinatier, P ;
Levasseur, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (06) :1319-1324
[6]  
El Hichou A, 2002, SEMICOND SCI TECH, V17, P607, DOI 10.1088/0268-1242/17/6/318
[7]   X-RAY PHOTOEMISSION SPECTROSCOPY STUDIES OF SN-DOPED INDIUM-OXIDE FILMS [J].
FAN, JCC ;
GOODENOUGH, JB .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (08) :3524-3531
[8]   Vacancy-induced intrinsic d0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires [J].
Ghosh, S. ;
Khan, Gobinda Gopal ;
Das, Bipul ;
Mandal, K. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
[9]   Paramagnetism in single-phase Sn1-xCoxO2 dilute magnetic semiconductors [J].
Ghosh, S. ;
De Munshi, D. ;
Mandel, K. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
[10]   Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process [J].
Ghoshal, Tandra ;
Biswas, Subhajit ;
Kar, Soumitra ;
Dev, Apurba ;
Chakrabarti, Supriya ;
Chaudhuri, Subhadra .
NANOTECHNOLOGY, 2008, 19 (06)