Analytical formulas for a local volatility model with stochastic rates

被引:9
作者
Benhamou, E. [2 ]
Gobet, E. [1 ]
Miri, M. [2 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[2] Pricing Partners, F-75009 Paris, France
关键词
Computational finance; Option pricing; Interest rates; Equity options; Mathematics of finance; Multi-factor models; Stochastic analysis; CONTINGENT CLAIMS; DIFFUSIONS; EXPANSION;
D O I
10.1080/14697688.2010.523011
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper presents new approximation formulae for European options in a local volatility model with stochastic interest rates. This is a companion paper to our work on perturbation methods for local volatility models [Int. J. Theor. Appl. Finance, 2010, 13( 4), 603-634] for the case of stochastic interest rates. The originality of this approach is to model the local volatility of the discounted spot and to obtain accurate approximations with tight estimates of the error terms. This approach can also be used in the case of stochastic dividends or stochastic convenience yields. We finally provide numerical results to illustrate the accuracy with real market data.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 25 条
[1]  
ANDREASEN J., 2006, GLOB DER C PAR
[2]  
Balland P., 2005, ICBI GLOB DER P
[3]   Time Dependent Heston Model [J].
Benhamou, E. ;
Gobet, E. ;
Miri, M. .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2010, 1 (01) :289-325
[4]   EXPANSION FORMULAS FOR EUROPEAN OPTIONS IN A LOCAL VOLATILITY MODEL [J].
Benhamou, E. ;
Gobet, E. ;
Miri, M. .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2010, 13 (04) :603-634
[5]   Smart expansion and fast calibration for jump diffusions [J].
Benhamou, E. ;
Gobet, E. ;
Miri, M. .
FINANCE AND STOCHASTICS, 2009, 13 (04) :563-589
[6]  
Benhamou E., 2008, WILMOT MAG, V38
[7]  
Brigo D., 2006, Interest Rate Models-Theory and Practice
[8]  
Dupire B., 1994, Risk, V7, P18
[9]  
Fouque J.-P., 2000, Derivatives in Financial Markets with Stochastic Volatility
[10]  
Fourni E., 1999, Finance Stoch, V3, P391, DOI [DOI 10.1007/S007800050068, 10.1007/s007800050068]