Comparative Analysis of Two-Coil and Three-Coil Structures for Wireless Power Transfer

被引:144
作者
Zhang, Jian [1 ]
Yuan, Xinmei [1 ]
Wang, Chuang [1 ]
He, Yang [1 ]
机构
[1] Jilin Univ, State Key Lab Automobile Simulat & Control, Changchun 130025, Peoples R China
关键词
Energy efficiency; load variation; misalignment; resonators; wireless power transfer; TRANSFER SYSTEM; COUPLED RESONATORS; DESIGN; EFFICIENT; TRACKING; NETWORK; COIL; METHODOLOGY; LOAD;
D O I
10.1109/TPEL.2016.2526780
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of electric vehicles and consumer electronics, wireless power transfer (WPT) is becoming a popular technology. Recently, magnetic resonant coupling has been considered to be the most effective and attractive WPT approach, and the two-coil structure is the most widely used for magnetic resonant coupling. It has been recently reported that the system's energy efficiency can be improved by a three-coil structure. In this paper, the three-coil structure is compared with the two-coil structure based on circuit theory. Simplified circuit models of the two-and three-coil structures are proposed to give a more intuitive and comprehensive analysis of the energy efficiency differences between the two structures. With the simplified model, the condition for a three-coil structure obtaining higher energy efficiency over its two-coil counterpart is derived, and the analysis shows that the WPT system with higher energy efficiency within a wider range of loads can be achieved by properly designed three-coil systems. Additionally, it also shows that the three-coil system has the significant advantage of reducing the current stress and the electromagnetic field emission that is caused by misalignments. The theoretical analysis is confirmed by both simulation and experimental results.
引用
收藏
页码:341 / 352
页数:12
相关论文
共 44 条
[1]   Wireless Power Transfer Resonance Coupling Amplification by Load-Modulation Switching Controller [J].
Ahn, Dukju ;
Hong, Songcheol .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (02) :898-909
[2]   A Transmitter or a Receiver Consisting of Two Strongly Coupled Resonators for Enhanced Resonant Coupling in Wireless Power Transfer [J].
Ahn, Dukju ;
Hong, Songcheol .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (03) :1193-1203
[3]   A Study on Magnetic Field Repeater in Wireless Power Transfer [J].
Ahn, Dukju ;
Hong, Songcheol .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (01) :360-371
[4]   Automated Impedance Matching System for Robust Wireless Power Transfer via Magnetic Resonance Coupling [J].
Beh, Teck Chuan ;
Kato, Masaki ;
Imura, Takehiro ;
Oh, Sehoon ;
Hori, Yoichi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) :3689-3698
[5]   Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems [J].
Budhia, Mickel ;
Boys, John T. ;
Covic, Grant A. ;
Huang, Chang-Yu .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (01) :318-328
[6]   A Study of Loosely Coupled Coils for Wireless Power Transfer [J].
Chen, Chih-Jung ;
Chu, Tah-Hsiung ;
Lin, Chih-Lung ;
Jou, Zeui-Chown .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2010, 57 (07) :536-540
[7]   Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances [J].
Cheon, Sanghoon ;
Kim, Yong-Hae ;
Kang, Seung-Youl ;
Lee, Myung Lae ;
Lee, Jong-Moo ;
Zyung, Taehyoung .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (07) :2906-2914
[8]   Inductive Power Transfer [J].
Covic, Grant A. ;
Boys, John T. .
PROCEEDINGS OF THE IEEE, 2013, 101 (06) :1276-1289
[9]  
Dang ZG, 2014, APPL POWER ELECT CO, P1317, DOI 10.1109/APEC.2014.6803477
[10]   Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis [J].
Deng, Junjun ;
Li, Weihan ;
Trong Duy Nguyen ;
Li, Siqi ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (11) :6130-6140