Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress

被引:138
|
作者
Mathur, Sonal [1 ]
Sharma, Mahaveer P. [2 ]
Jajoo, Anjana [1 ]
机构
[1] Devi Ahilya Univ, Sch Life Sci, Indore 452017, Madhya Pradesh, India
[2] ICAR Indian Inst Soybean Res, Indore, Madhya Pradesh, India
关键词
AMF; High temperature; Maize; Photosynthesis; Photosystem II; CHLOROPHYLL-A FLUORESCENCE; ABIOTIC STRESS; HEAT-STRESS; GROWTH; LEAVES; WHEAT; TOOL;
D O I
10.1016/j.jphotobiol.2018.02.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, pot experiments were performed to investigate the effects of high temperature stress (44 degrees C) in maize plants colonized with and without arbuscular mycorrhizal fungi (AMF). Various parameters characterizing photosynthetic activity were measured in order to estimate the photosynthetic efficiency in maize plants. It was observed that density of active reaction centers of PSII, quantum efficiency of photosystem II (PSII), linear electron transport, excitation energy trapping, performance index, net photosynthesis rate increased in AMF (+) plants at 44 degrees C 0.2 degrees C. Efficiency of primary photochemical reaction (represented as F-v/F-o) increased in AMF (+) plants as compared to AMF (-) plants. AMF seems to have protected water splitting complex followed by enhanced primary photochemistry of PSII under high temperature. Basic morphological parameters like leaf width, plant height and cob number increased in AMF (+) plants as compared to AMF (-) plants. AMF (+) plants grew faster than AMF (-) plants due to larger root systems. Chl content increased in AMF (+) plants as compared to AMF (-) maize plants. AMF hyphae likely increased Mg uptake which in turn increased the total chlorophyll content in AMF (+) maize plants. This subsequently led to a higher production in photosynthate and biomass. Thus AMF (+) plants have shown better photosynthesis performance as compared to AMF (-) maize plants under high temperature stress.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 50 条
  • [1] Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
    Sonal Mathur
    Rupal Singh Tomar
    Anjana Jajoo
    Photosynthesis Research, 2019, 139 : 227 - 238
  • [2] Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
    Mathur, Sonal
    Tomar, Rupal Singh
    Jajoo, Anjana
    PHOTOSYNTHESIS RESEARCH, 2019, 139 (1-3) : 227 - 238
  • [3] The effect of Arbuscular Mycorrhizal Fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes
    Celebi, Seyda Zorer
    Demir, Semra
    Celebi, Rafet
    Durak, Emre Demirer
    Yilmaz, Ibrahim Hakki
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2010, 46 (05) : 302 - 305
  • [4] Effect of Phosphorus and Arbuscular Mycorrhizal Fungi (AMF) Inoculation on Growth and Productivity of Maize (Zea mays L.) in a Tropical Ferralsol
    Kazadi, Audry Tshibangu
    Lwalaba, Jonas Lwalaba Wa
    Ansey, Bibich Kirika
    Muzulukwau, Judith Mavungu
    Katabe, Gabriella Manda
    Karul, Martine Iband
    Baert, Geert
    Haesaert, Geert
    Mundende, Robert-Prince Mukobo
    GESUNDE PFLANZEN, 2022, 74 (01): : 159 - 165
  • [5] THE EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI (AMF) AND DEFICIT IRRIGATION LEVELS ON YIELD AND GROWTH PARAMETERS OF THE SILAGE MAIZE (ZEA MAYS L.)
    Erdogan, Oktay
    Bagdatli, M. Cuneyt
    FRESENIUS ENVIRONMENTAL BULLETIN, 2017, 26 (04): : 2947 - 2954
  • [6] Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi
    Liu, Lingzhi
    Gong, Zongqiang
    Zhang, Yulong
    Li, Peijun
    ECOTOXICOLOGY, 2014, 23 (10) : 1979 - 1986
  • [7] Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi
    Lingzhi Liu
    Zongqiang Gong
    Yulong Zhang
    Peijun Li
    Ecotoxicology, 2014, 23 : 1979 - 1986
  • [8] Effect of Arbuscular Mycorrhizal Fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress
    Peng, Zicheng
    Zulfiqar, Tayyaba
    Yang, Haichang
    Wang, Ming
    Zhang, Fenghua
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [9] Using of Arbuscular Mycorrhizal Fungi to Reduce the Deficiency Effect of Phosphorous Fertilization on Maize Plants (Zea mays L.)
    Almagrabi, O. A.
    Abdelmoneim, T. S.
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2012, 9 (04): : 1648 - 1654
  • [10] Growth, yield, nutrients uptake and anatomical properties of direct seeding and transplanting maize (Zea mays L.) plants under arbuscular mycorrhizal fungi and water stress
    Rezazadeh, Saeed
    Ilkaee, Mohammadnabi
    Aghayari, Fayaz
    Paknejad, Farzad
    Rezaee, Mehdi
    JOURNAL OF BIOLOGICAL RESEARCH-BOLLETTINO DELLA SOCIETA ITALIANA DI BIOLOGIA SPERIMENTALE, 2021, 94 (01): : 1 - 12