The relative monoidal center and tensor products of monoidal categories

被引:6
作者
Laugwitz, Robert [1 ,2 ]
机构
[1] Univ East Anglia, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[2] Rutgers State Univ, Dept Math, Hill Ctr Math Sci, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
基金
英国工程与自然科学研究理事会;
关键词
Monoidal center; categorical modules; braided monoidal categories; relative tensor product; HOPF-ALGEBRAS; DRINFELD; CONSTRUCTION;
D O I
10.1142/S0219199719500688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a theory of monoidal categories relative to a braided monoidal category, called augmented monoidal categories. For such categories, balanced bimodules are defined using the formalism of balanced functors. It is shown that there exists a monoidal structure on the relative tensor product of two augmented monoidal categories which is Morita dual to a relative version of the monoidal center. In examples, a category of locally finite weight modules over a quantized enveloping algebra is equivalent to the relative monoidal center of modules over its Borel part. A similar result holds for small quantum groups, without restricting to locally finite weight modules. More generally, for modules over bialgebras inside a braided monoidal category, the relative center is shown to he equivalent to the category of Yetter Drinfeld modules inside the braided category. If the braided category is given by modules over a quasitriangular Hopf algebra, then the relative center corresponds to modules over a braided version of the Drinfeld double (i.e. the double bosonization in the sense of Majid) which are locally finite for the action of the dual.
引用
收藏
页数:53
相关论文
共 50 条
[1]   Category O for quantum groups [J].
Andersen, Henning Haahr ;
Mazorchuk, Volodymyr .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) :405-431
[2]  
Andruskiewitsch N, 2002, MATH SCI R, V43, P1
[3]   Finite quantum groups and Cartan matrices [J].
Andruskiewitsch, N .
ADVANCES IN MATHEMATICS, 2000, 154 (01) :1-45
[4]  
[Anonymous], 2000, Foundations of Quantum Group Theory
[5]  
[Anonymous], 1986, ZAP NAUCHN SEMIN
[6]  
[Anonymous], 1990, NUCL PHYS B S
[7]   Partially dualized Hopf algebras have equivalent Yetter-Drinfel'd modules [J].
Barvels, Alexander ;
Lentner, Simon ;
Schweigert, Christoph .
JOURNAL OF ALGEBRA, 2015, 430 :303-342
[8]  
Bernstein I.N., 1971, FUNCKCIONAL ANAL PRI, V5, P1, DOI DOI 10.1007/BF01075841
[9]   Hopf (bi-)modules and crossed modules in braided monoidal categories [J].
Bespalov, Y ;
Drabant, B .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 123 (1-3) :105-129
[10]   TWO-DIMENSIONAL MONAD THEORY [J].
BLACKWELL, R ;
KELLY, GM ;
POWER, AJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (01) :1-41