Augmenting Netflix Search with In-Session Adapted Recommendations

被引:6
作者
Bhattacharya, Moumita [1 ]
Lamkhede, Sudarshan [1 ]
机构
[1] Netflix Res, Los Gatos, CA 95032 USA
来源
PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022 | 2022年
关键词
Recommender Systems; Search; Neural Networks; Multi-task Learning; Sequence Models;
D O I
10.1145/3523227.3547407
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We motivate the need for recommendation systems that can cater to the members' in-the-moment intent by leveraging their interactions from the current session. We provide an overview of an end-to-end in-session adaptive recommendations system in the context of Netflix Search. We discuss the challenges and potential solutions when developing such a system at production scale.
引用
收藏
页码:542 / 545
页数:4
相关论文
共 10 条
[1]   User Response Models to Improve a REINFORCE Recommender System [J].
Chen, Minmin ;
Chang, Bo ;
Xu, Can ;
Chi, Ed H. .
WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, :121-129
[2]   Exploring Longitudinal Effects of Session-based Recommendations [J].
Ferraro, Andres ;
Jannach, Dietmar ;
Serra, Xavier .
RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, :474-479
[3]  
Hidasi B, 2016, Arxiv, DOI [arXiv:1511.06939, DOI 10.48550/ARXIV.1511.06939]
[4]   Self-Attentive Sequential Recommendation [J].
Kang, Wang-Cheng ;
McAuley, Julian .
2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, :197-206
[5]   Challenges in Search on Streaming Services: Netflix Case Study [J].
Lamkhede, Sudarshan ;
Das, Sudeep .
PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, :1371-1374
[6]  
Liebling DJ, 2012, SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1035, DOI 10.1145/2348283.2348456
[7]   STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation [J].
Liu, Qiao ;
Zeng, Yifu ;
Mokhosi, Refuoe ;
Zhang, Haibin .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :1831-1839
[8]   ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation [J].
Mi, Fei ;
Lin, Xiaoyu ;
Faltings, Boi .
RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, :408-413
[9]   Deep learning for recommender systems: A Netflix case study [J].
Steck, Harald ;
Baltrunas, Linas ;
Elahi, Ehtsham ;
Liang, Dawen ;
Raimond, Yves ;
Basilico, Justin .
AI MAGAZINE, 2021, 42 (03) :7-18
[10]   Using Navigation to Improve Recommendations in Real-Time [J].
Wu, Chao-Yuan ;
Alvino, Christopher, V ;
Smola, Alexander J. ;
Basilico, Justin .
PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, :341-348