On homotopy types of complements of analytic sets and Milnor fibres

被引:0
作者
Fernandez de Bobadilla, Javier [1 ]
机构
[1] ICMAT CSIC Complutense Autonoma Carlos III, Madrid, Spain
来源
TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES | 2011年 / 538卷
关键词
CRITICAL LOCUS; COMPLETE INTERSECTION; SINGULARITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any germ of complex analytic set in C(n) there exists a hypersurface singularity whose Milnor fibration has trivial geometric monodromy and fibre homotopic to the complement of the germ of complex analytic set. As an application we show an example of a quasi-homogeneous hypersurface singularity, with trivial geometric monodromy and simply connected and non-formal Milnor fibre.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 20 条
[1]  
BRIESKORN E, 1973, LECT NOTES MATH, V317, P21
[2]  
COGOLLUDOAGUSTI.JI, ARXIV07111951
[3]   SOME CLASSES OF LINE SINGULARITIES [J].
DEJONG, T .
MATHEMATISCHE ZEITSCHRIFT, 1988, 198 (04) :493-517
[4]   REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS [J].
DELIGNE, P ;
GRIFFITHS, P ;
MORGAN, J ;
SULLIVAN, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :245-274
[5]  
Denham G, 2007, PURE APPL MATH Q, V3, P25
[6]  
DIMCA A, ARXIVMATH0512480
[7]  
DIMCA A, ARXIV08102158
[8]   TOPOLOGY AND GEOMETRY OF COHOMOLOGY JUMP LOCI [J].
Dimca, Alexandru ;
Papadima, Stefan ;
Suciu, Alexander I. .
DUKE MATHEMATICAL JOURNAL, 2009, 148 (03) :405-457
[9]  
FEICHTNER EM, 2005, ZAP NAUCHN SEM S PET, V326
[10]  
GORESKY M, 1988, ERGEBNISSE MATH, V14